• Title/Summary/Keyword: 유사 키워드

검색결과 315건 처리시간 0.026초

키워드 네트워크를 이용한 국내 관광연구의 최근 연구동향 분석 (The Study on Recent Research Trend in Korean Tourism Using Keyword Network Analysis)

  • 김민선;엄혜미
    • 한국산학기술학회논문지
    • /
    • 제17권9호
    • /
    • pp.68-73
    • /
    • 2016
  • 관광에 대한 학문적 실무적 관심과 소비가 지속적으로 증가하고 있음에 따라 본 연구에서는 최근 약 6년간의 관광분야 주요 등재지에 실린 키워드 데이터를 이용하여 국내 관광연구 동향과 지식구조를 정리해보고자 하였다. 이를 위해 첫 번째, 관광분야의 대표적인 국내 저널들을 선정하고 저널에 게재된 논문 별 키워드를 추출하였다. 두 번째, 동일한 논문에 동시 등장한 키워드들을 링크로 연결하여 키워드 네트워크를 구성하였다. 마지막으로, 여러 논문에서 동시에 키워드로 사용된 키워드들 간의 유사성 분석을 통해 관광 논문들에서 가장 자주 사용된 주요 키워드를 추출하고 전체 네트워크에 대한 컴포넌트 분석을 통해 거시적인 관광연구동향 및 지식구조를 파악하였다. 분석 결과, 국내 관광연구 주제들은 몇몇 주제에 고착되어 있지 않고 빠르고 다양하게 변화하는 양상을 보인다고 할 수 있다. 물론 조직이나 종사원 차원의 주제와 같이 지속적으로 선호되는 연구주제들도 있지만 시간이 지남에 따라 연구대상의 내재적, 외재적 요인들이 점차 세분화되고 연구대상들도 종사 분야에 따라 다양하고 구체적으로 선정되어 진행되고 있음을 확인할 수 있었다. 본 연구는 기존의 계량적 분석방법과 키워드 중심성 분석방법이 아닌 컴포넌트 분석을 수행함으로써 국내관광연구의 구체적 연구주제를 파악할 수 있고 이들 간의 관계를 살펴볼 수 있어 앞으로 이 분야에서의 새로운 주제를 선정하는데 참고할 유용한 정보로 활용될 수 있다.

동시링크를 이용한 웹 문서 클러스터링 실험 (Clustering of Web Document Exploiting with the Co-link in Hypertext)

  • 김영기;이원희;권혁철
    • 한국도서관정보학회지
    • /
    • 제34권2호
    • /
    • pp.233-253
    • /
    • 2003
  • 인간은 지식의 조직을 통해 세계를 이해한다. 정보검색분야에서 연구되고 있는 정보의 조직화에는 분류와 클러스터링이라는 두 가지 유형이 있다. 분류는 미리 정의된 범주에 각 항목을 배정하는 행위인 반면, 클러스터링은 유사하거나 관련된 항목을 집단화함으로써 정보를 조직한다. 인터넷 정보자원의 조직은 웹 문서에 출현하는 단어들에서 키워드를 추출하여 역파일을 작성함으로써 검색에 활용하는 것이 일반적인 방법이다. 그러나 키워드의 출현 위치나 단어빈도를 통한 문서유사도 기법은 사용된 언어가 다르거나 대부분이 앵커텍스트만으로 구성되어 있는 대문페이지처럼 적용하기 어려운 경우가 많다. 이 연구는 계량정보학적 분석 기법 중에서 동시인용 기법을 웹 문서의 하이퍼링크에 적용하여, 웹 문서의 클러스터링 가능성을 실험한다.

  • PDF

단어 분별도에 기반한 뉴스 검색 문서 요약 (Search Resulted News Summarization using Word Discriminability)

  • 이상건;이혜민;김기령;서덕호;이현아
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2014년도 제26회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.175-178
    • /
    • 2014
  • 다양한 언론사로부터 기사를 제공받아 서비스하는 인터넷 포털의 뉴스에서는 수많은 중복 기사가 실시간으로 등록된다. 이로 인하여 인터넷 포털에서 관심 있는 주제의 기사를 검색하여 찾아보려는 경우 검색키워드를 포함한 기사의 수가 지나치게 많아 원하는 정보를 적절하게 얻기 어렵다. 본 논문에서는 이러한 문제점을 해결하기 위해서 검색 기사 중 유사한 문서를 군집화하고 군집에 대한 다중문서요약을 사용자에게 제시하여 검색된 기사를 효율적으로 활용할 수 있는 방법을 제시한다. 다중문서 요약에서는 뉴스 기사에 적합한 단어 가중치인 분별도(discriminability)를 제안하여 사용하여 군집화된 기사로부터 유사 문장을 군집한다. 시스템에서는 군집된 기사의 대표 문장 군집에서 대표 문장, 즉 키워드에 대한 주제별 기사의 요약문을 결과로 제시하여, 효율적인 뉴스 검색을 지원한다.

  • PDF

챗봇 프레임워크 성능 향상을 위한 점진적 학습 기법 (Incremental Learning for Performance Enhancement of Chatbot Framework)

  • 박상현;박진욱;조수헌;현제혁;황진성
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2019년도 제59차 동계학술대회논문집 27권1호
    • /
    • pp.283-284
    • /
    • 2019
  • 규칙 기반의 챗봇(Chatbot)은 개발자가 미리 지정한 키워드와 패턴을 통해 사용자의 의도(Intent)를 파악하기 때문에, 챗봇을 응용한 어플리케이션에서는 제한적인 활용도를 보인다. 본 논문에서는 위 문제를 해결하기 위해, 프레임워크 기반의 한글 자연어 처리 챗봇 성능 향상을 위한 점진 학습(Incremental Learning)을 제안한다. DialogFlow는 규칙 기반의 챗봇 프레임워크로서, 사용자 질의 패턴에 대한 사전 학습이 치명적이다. 제안하는 점진 학습 기법은 사용자 질의가 미리 학습되어 있지 않은 경우에도, 유사도 기반으로 질의의 의도를 결정할 수 있다. 이때 entity 조합과 기존에 학습된 질의들과의 유사도를 통해 의도를 결정하여, 프레임워크를 점진적으로 학습한다. 이를 적용하여 연세대학교 정보들을 제공하는 챗봇을 개발하고, 실험을 통해 제안된 점진 학습 기법은 기존 시스템보다 다양한 종류의 질의 처리가 가능하고, 더욱 빠른 응답 속도를 나타내는 것을 확인하였다. 또한 사용자가 증가함에 따라 점진 학습을 통해 성능이 더욱 증가하는 자가 학습 모형으로서의 우수함을 확인하였다.

  • PDF

확장 불리언 질의에 대한 비용 기반 최적화 (Cost-based Optimization of Extended Boolean Queries)

  • 박병권
    • 정보관리학회지
    • /
    • 제18권3호
    • /
    • pp.29-40
    • /
    • 2001
  • 본 논문에서는 역색인 파일을 미용하여 학장 불리언 질의를 처리할 때 최소 비용의 질의 처리 방법을 구해 주는 질의 최적화 알고리즘을 제시한다. 확장 불리언 질의를 처리하는 방법은 질의를 구성하는 키위드의 처리 순서에 따라 여러 가지가 있을 수 있으므로 확장 불리언 질의 최적화 문제는 결국 최적 키워드 처리 순서를 구하는 문제로 귀결된다. 본 논문에서는 이 문제가 데이터베이스 질의 최적화에서 최적 조인 순서를 구하는 문제와 구조적으로 유사함을 보이고 이 분야의 연구 결과를 이용하여 문제를 해결한다. 즉, 확장 불리언 질의 처리에 대한 비용 모델을 수립하고 키워드 선택률과 역색인 파일 접근 비용을 이용하여 키워드 순위 개념을 도입한 후 이를 이용하여 최적 키워드 처리 순서를 구하는 알고리즘을 도출한다. 그리고 도출한 질의 최적화 알고리즘의 최적성을 증명하고. 실험을 통하여 실제로 최소비용의 질의 처리 방법을 구함을 보이고, 질의 최적화를 하지 않을 경우와 비교하였을 때 그 성능이 월등히 우수함을 보인다. 본 논문에서 제시한 질의 최적화 알고리즘은 정보검색시스템의 질의 처리 성능 향상에 큰 기여를 하리라 믿는다.

  • PDF

Topological Data Analysis 기법을 활용한 호텔 리뷰데이터의 감성 키워드 기반 호텔 관계망 구축 (Identification of sentiment keywords association-based hotel network of hotel review using mapper method in topological data analysis)

  • 전예슬;김정재
    • 응용통계연구
    • /
    • 제33권1호
    • /
    • pp.75-86
    • /
    • 2020
  • 호텔 리뷰 데이터에는 소비를 이끈 구매 요인, 호텔에 대한 장점 및 단점 등 다양한 정보를 추출할 수 있다. 특히, 리뷰 데이터의 감성 키워드는 소비자들이 호텔에 관해 이야기하고 있는 평가 및 반응 등의 주요 내용을 파악하는 데 도움을 준다. 하지만 많은 양의 리뷰 데이터를 소비자가 직접 살펴보기에는 효율성이 떨어진다. 이를 위해 리뷰 데이터를 요약하는 기술이 요구된다. 본 연구에서는 기존의 감성 키워드 관계망을 구축하는 연구에 더 나아가, 이와 관련된 호텔에 대한 정보까지 동시에 제공하고자 한다. 이를 위해 호텔 도메인에 적합한 감성 키워드 사전을 구축하고, 이를 바탕으로 위상학적 데이터 분석 기반의 맵퍼(topological data analysis based mapper)를 통해서 감성 키워드 기반의 호텔 관계망을 구축한다. 구축된 관계망을 통해 유사한 감성을 기반으로 연결된 호텔들을 살펴볼 수 있으며 동시에, 호텔에 대한 감성 정보도 파악할 수 있다. 이러한 리뷰 요약 정보는 사용자들에게 호텔들에 대한 요약된 감성 평가를 제공하며, 호텔 마케팅 및 전략 기획팀에 분석 대상에 대한 소비자들의 인식을 파악할 수 있도록 돕는다.

클라우드 환경에서 문서의 유형 분류를 위한 시맨틱 클러스터링 모델 (Semantic Clustering Model for Analytical Classification of Documents in Cloud Environment)

  • 김영수;이병엽
    • 한국콘텐츠학회논문지
    • /
    • 제17권11호
    • /
    • pp.389-397
    • /
    • 2017
  • 최근 시맨틱 웹 문서는 클라우드 기반으로 생성 및 유통되고 문서유형 분류에 따른 쉽고 신속한 정보 검색을 위해 지능형 시맨틱 에이전트를 요구하고 있다. 기존의 웹 문서의 검색은 키워드를 이용하여 해당하는 질의어가 포함된 문서 목록을 결과로 가져오며 사용자의 요구시에 내용을 제시하는 것이 일반적인 형태이다. 이는 웹 문서의 유사도와 시맨틱 관련성을 고려하지 않음으로써 사용자가 내용 검색과 분석에 많은 시간과 노력을 요구한다. 이의 해결을 위해서 빅 데이터 요소 기술인 하둡과 NoSQL을 활용하여 시맨틱 웹 문서에 포함된 키워드 빈도에 기반한 웹 문서의 유형 분류와 유사도를 제시하는 시맨틱 클러스터링 모델을 제안한다. 제안 모델은 실시간 데이터 처리가 요청되는 이종 모델을 가진 공공 데이터와 웹 데이터를 취합하여 일반 사용자가 쉽게 질의할 수 있는 대용량 지식 기반 시스템을 구축하는데 응용 모델로 활용될 수 있다.

토픽 모델링을 이용한 비정형 데이터 기반 산업간 유사도 분석 (Analysis of similarity between industries based on unstructured data using topic modeling)

  • 김경원;박종빈;정종진;윤경로
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2018년도 추계학술대회
    • /
    • pp.180-182
    • /
    • 2018
  • 최근 빠르게 변화하는 산업 환경에서 뉴스 기사와 같은 비정형 데이터를 기반으로 산업 트랜드를 분석하기 위한 연구가 진행되고 있다. 뉴스와 같은 비정형 데이터를 기반으로 산업별 트랜드를 분석하기 위해서는 분석 대상 산업에 대한 많은 양의 시계열 데이터가 요구된다. 하지만, 수집된 비정형 데이터를 분류하면 산업별/기간별 일정하지 않은 데이터 분포를 보이거나, 특정 산업에 대해서는 특정 기간에 데이터가 존재하지 않은 경우가 발생하여 산업별 시계열 분석이 어려운 경우가 발생할 수 있다. 이에, 본 논문에서는 산업별/기간별 균일하지 못한 비정형 데이터의 분포를 보정하기 위한 방법으로 비정형 데이터 기반 산업간 유사도를 분석 기법을 제안한다. 산업별 유사도 분석을 위해 각 산업별 주요 키워드를 도출하고 토픽 모델링 기법을 이용하여 산업간 유사도 분석을 통해 산업별/기간별 비정형 데이터 부족현상을 보완하는 방법을 제시한다.

  • PDF

Word2Vec 모델 기반의 유사도를 이용한 상품기획 모델 (Product Planning using Similarity Analysis Technique Based on Word2Vec Model)

  • 안영휘;박구락
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2021년도 제63차 동계학술대회논문집 29권1호
    • /
    • pp.11-12
    • /
    • 2021
  • 소비자가 남긴 댓글이나 상품평은 상품기획의 주요 정보가 될 수 있다. 본 논문에서는 버티컬 무소음 마우스 7,300개에 대한 온라인 댓글을 딥러닝 기술인 Word2Vec을 이용하여 유사도 분석을 시행하였다. 유사도 분석결과 클릭 키워드에 대한 장점으로 소리(.975), 버튼(.972), 무게(.971)가 분석되었으며 단점은 가볍다(.959)이었다. 이는 구매 상품에 대한 소비자의 의견, 태도, 성향 및 서비스에 대한 포괄적인 의견들을 데이터화 하여 상품의 특징을 분석할 수 있는 의미있는 과정 이라고 볼 수 있다. 상품기획 프로세스에 딥러닝 기술을 통한 소비자의 감성분석자료 포함시키는 전략을 적용한다면 상품기획의 시간과 비용투자의 경제성을 높일 수 있고 나아가 빠르게 변화하는 소비자의 요구사항을 적기에 반영할 수 있을 것으로 생각된다.

  • PDF

주제어 프로파일링 및 동시출현분석을 통한 지능정보시스템 연구의 정체성에 관한 연구 (A Study on the Intelligence Information System's Research Identity Using the Keywords Profiling and Co-word Analysis)

  • 윤승정;김민용
    • 지능정보연구
    • /
    • 제22권4호
    • /
    • pp.139-155
    • /
    • 2016
  • 본 연구는 한국지능정보시스템학회의 고유한 연구영역을 파악하고자 지능정보연구 학술지에 최근 3년 동안 게재된 논문들을 대상으로 키워드를 수집하여 프로파일링 기법과 동시출현빈도를 분석하였다. 이를 통하여 지능정보시스템 연구의 정통성과 정체성을 밝히는 동시에 향후 추구해야할 연구영역을 제시하고자 한다. 연구 정체성에 대한 상대적 위치를 파악하기 위하여 한국지능정보시스템학회 뿐만 아니라 유사학회에 해당하는 한국경영정보학회 그리고 한국정보시스템학회의 키워드 및 연구방법론을 수집하여 비교하였다. 또한, 한국지능정보시스템학회에서 인공지능/데이터마이닝, 지능형인터넷, 지식경영에 대한 주요 분야를 중점적으로 다루고 있음을 고려할 때 각 분야의 대표적인 학회로 한국빅데이터서비스학회 및 한국빅데이터학회, 한국인터넷전자상거래학회, 한국지식경영학회의 연구 경향을 각각 비교 분석하였다. 키워드 분석 결과만을 요약하면, 한국지능정보시스템학회는 키워드 부문에서는 텍스트마이닝, 데이터 마이닝 및 추천시스템에 집중하고 있다는 것을 알 수 있었다. 인공지능/데이터마이닝 분야에서는 빅데이터 개념 자체와 감성분석에 초점을 두고 있고, 지능형인터넷 분야에서는 SNS와 구매의도, 신뢰, 기술수용모델에 집중하고 있었다. 지식경영 분야에서는 지식관리, 지식 공유 키워드에 집중함을 발견할 수 있었다. 더 나아가 한국지능정보시스템학회 뿐만 아니라 유사 연구 분야에서 생태계 전반적 융합 가능성을 진단해 보았다.