Proceedings of the Korean Society of Computer Information Conference (한국컴퓨터정보학회:학술대회논문집)
- 2021.01a
- /
- Pages.11-12
- /
- 2021
Product Planning using Similarity Analysis Technique Based on Word2Vec Model
Word2Vec 모델 기반의 유사도를 이용한 상품기획 모델
- Ahn, Yeong-Hwi (Dept of Computer Engineering, Kongju National University) ;
- Park, Koo-Rack (Dept of Computer Engineering, Kongju National University)
- Published : 2021.01.21
Abstract
소비자가 남긴 댓글이나 상품평은 상품기획의 주요 정보가 될 수 있다. 본 논문에서는 버티컬 무소음 마우스 7,300개에 대한 온라인 댓글을 딥러닝 기술인 Word2Vec을 이용하여 유사도 분석을 시행하였다. 유사도 분석결과 클릭 키워드에 대한 장점으로 소리(.975), 버튼(.972), 무게(.971)가 분석되었으며 단점은 가볍다(.959)이었다. 이는 구매 상품에 대한 소비자의 의견, 태도, 성향 및 서비스에 대한 포괄적인 의견들을 데이터화 하여 상품의 특징을 분석할 수 있는 의미있는 과정 이라고 볼 수 있다. 상품기획 프로세스에 딥러닝 기술을 통한 소비자의 감성분석자료 포함시키는 전략을 적용한다면 상품기획의 시간과 비용투자의 경제성을 높일 수 있고 나아가 빠르게 변화하는 소비자의 요구사항을 적기에 반영할 수 있을 것으로 생각된다.