딥뉴럴네트워크 모델의 취약점으로 모델 탈취 방법이 있다. 이 방법은 대상 모델에 대하여 여러번의 반복된 쿼리를 통해서 유사 모델을 생성하여 대상 모델의 예측값과 동일하게 내는 유사 모델을 생성하는 것이다. 본 연구에서, 학습 데이터가 없이 대상 모델을 탈취하는 방법에 대해서 분석을 하였다. 생성 모델을 이용하여 입력 데이터를 생성하고 대상 모델과 유사 모델의 예측값이 서로 가까워지도록 손실함수를 정의하여 유사 모델을 생성한다. 이 방법에서 대상 모델의 입력 데이터에 대한 각 클래스의 logit(로직) 값을 이용하여 경사하강법으로 유사 모델이 그것과 유사하도록 학습하는 과정을 갖는다. 실험 환경으로 pytorch 머신러닝 라이브러리를 이용하였으며, 데이터셋으로 CIFAR10과 SVHN을 사용하였다. 대상 모델로 ResNet 모델을 이용하였다. 실험 결과로써, 모델 탈취 방법은 CIFAR10에 대해서 86.18%이고 SVHN에 대해서 96.02% 정확도로 대상 모델과 유사한 예측값을 내는 유사 모델을 생성하는 것을 볼 수가 있었다. 추가적으로 모델 탈취 방법에 대한 고려사항와 한계점에 대한 고찰도 분석하였다.
클러스터링은 데이터의 특성 추출, 데이터의 압축 등을 목적으로 동일 클러스터에 속하는 데이터간에는 유사성이 크도록 하면서 다른 클러스터에 속하는 데이터간에는 유사성이 작도록 데이터를 군집화하는 것이다. 일상에서 발생하는 많은 데이터에는 관측 오류, 불확실성, 주관적인 판정 등으로 인해서 데이터의 속성값이 정확한 값으로 주어지지 않은 경우가 있다. 본 논문에서는 분명한 값뿐만 아니라 퍼지값도 포함한 데이터들에 대해서 퍼지 클러스터링하는 방법을 제안한다.
특정 도메인의 정보시스템간에 정보를 공유하기 위해서, 정보 시스템들은 도메인별로 사용되는 메타데이터를 각기 정의하여 사용하기 때문에 각각의 정보 시스템간의 정보 공유시 메타데이터의 이질성 문제가 발생되지 않는다. 그러나, 메타데이터의 불일치 문제는 이기종 도메인간에 정보를 공유할때 발생된다. 본 논문에서는 메타데이터를 이용하여 구축된 정보시스템 간의 상호운용성을 증진하기 위하여 메타데이터의 의미적 유사성 측정 방법을 제안한다. 이를 위하여 메타데이터 레지스트리(MDR)에 정의되어 있는 메타데이터에 대한 개념 모델을 정의하고. 개념모델의 인스턴스간에 의미유사성을 측정하는 방법을 제안한다. 제안한 방법을 사용한 결과 도메인이 다른 정보시스템간에 점보공유를 위한 의미적으로 유사한 최적의 메타데이터를 선택할 수 있다.
최근 들어 상업적이거나 과학적인 데이터들의 폭발적인 증가를 볼 수 있다. 이런 데이터들은 항목들 간의 순서적인 면을 가지고 있는 시퀀스 데이터들이다. 그러나 항목들 간의 순서적인 면을 고려한 클러스터링 연구는 많지 않다. 본 논문에서는 이들 시퀀스 데이터들 간의 유사도를 계산하는 방법과 클러스터링 방법을 연구한다. 특히 다양한 조건을 고려한 확장된 유사도 계산 방법을 제안한다. splice 데이터 셋을 이용하여 본 논문에서 제안하는 클러스터링 방법이 기존 방법 보다 우수하다는 것을 보여준다.
시험기간 동안 수집된 고장 데이터를 이용하여 소프트웨어 신뢰도를 예측할 수 있는 모델은 많으나 이 예측 방법은 정확하지 못하며, 특히 초기 시험 단계에서는 더욱 더 부정확하여 예측자들은 이러한 소프트웨어 신뢰도 모델의 적용을 주저한다. 한편 소프트웨어 신뢰도 성장 모델은 유사 프로젝트나 개발 초기에 얻은 정보를 가지고는 신뢰도 예측 데이터로 활용이 불가능하다. 예를 들면 최근의 소프트웨어 시스템들은 항시 유사 프로젝트들로부터 활용이 가능한 일련의 정보와 동일 응용 영역의 초기 또는 최신의 정보들이 변경, 개선되기 때문이다. 본 논문에서는 유사한 프로젝트로부터 얻은 공통의 데이터들을 활용하여 소프트웨어 신뢰도를 예측할 수 있는 방법들을 제안한다. 특히 일반적으로 사용되고 있는 Goel-Okumoto(G-O) 모델이나 고장 검출률을 이용하거나 시험 데이터를 활용하는 방법 등을 이용하여 모델 파라미터를 추정하고 실제 프로젝트 수행중에 얻어진 각종 결과를 토대로 해서 Numerical Algorithm이 아닌 통계적인 관점의 분석 결과와 MLE(Maximum Likelihood Estimation) 추정 방법 등을 동원하여 초기에 우리 프로젝트에 맞는 정확한 소프트웨어 신뢰도 평가 방법을 제안하였다.
연속된 일차원 실수로 이루어진 시계열 데이터는 데이터 마이닝이나 데이터 웨어하우징과 같은 다양한 데이터베이스 응용 분야에서 연구되어져 왔다. 그러나 최근의 복잡한 비즈니스 환경에서, 다차원 데이터 시퀀스(multidimensional data sequence : MDS)는 일차원 시계열 데이터와 더불어 그 중요성이 더해가고 있다. 다차원 데이터 시퀀스의 예로써, 비디오 스트림은 색상과 질감 등의 속성들로 이루어진 다차원 공간상에서 MDS로 나타낼 수 있다. 본 논문에서는 패턴 유사성 검색에서 사용되는 효과적인 유사성 척도를 제시한다. 하나의 MDS는 여러 개의 세그먼트(segment)로 나누어지며, 각 세그먼트는 다양한 의미적인 특징들로 표현된다. 유사성 척도는 이러한 세그먼트에 대해서 정의되는데 이 척도를 사용하여 어떤 주어진 질의 시퀀스에 대하여 무관한 세그먼트들은 검색 대상에서 일차적으로 제외된다. 데이터 시퀀스와 질의 시퀀스 모두 세그먼트 단위로 분할되며, 질의 처리는 전체 시퀀스의 모든 데이터를 검색하지 않고 데이터 세그먼트와 질의 세그먼트의 특징을 비교하는 것을 기초로 하여 수행된다.
클러스터링은 데이터 집합을 유사한 데이터 개체들의 클러스터들로 분할하여 데이터 속에 존재하는 의미 있는 정보를 얻는 과정이다. 클러스터링의 주요 쟁점은 고차원 데이터를 효율적으로 클러스터링하는 것과 최적화 문제를 해결하는 것이다. 본 논문에서는 SVM(Support Vector Machines)기반의 새로운 유사도 측정법과 효율적으로 클러스터의 개수를 생성하는 방법을 제안한다. 고차원의 데이터는 커널 함수를 이용해 Feature Space로 매핑시킨 후 이웃하는 클러스터와의 유사도를 측정한다. 이미 생성된 클러스터들은 측정된 유사도 값과 Δd 임계값에 의해서 원하는 클러스터의 개수를 얻을 수 있다. 제안된 방법을 검증하기 위하여 6개의 UCI Machine Learning Repository의 데이터를 사용한 결과, 제시된 클러스터의 개수와 기존의 연구와 비교하여 향상된 응집도를 얻을 수 있었다.
모델 역추론 공격은 공격 대상 네트워크를 훈련하기 위해 사용되는 훈련 데이터셋 중 개인 데이터셋을 공개 데이터셋을 사용하여 개인 훈련 데이터셋을 복원하는 것이다. 모델 역추론 방법 중 적대적 생성 신경망을 사용하여 모델 역추론 공격을 하는 과거의 논문들은 딥러닝 모델 전체의 역추론에만 초점을 맞추기 때문에, 이를 통해 얻은 원본 이미지의 개인 데이터 정보는 제한적이다. 따라서, 본 연구는 대상 모델의 중간 출력을 사용하여 개인 데이터에 대한 더 품질 높은 정보를 얻는데 초점을 맞춘다. 본 논문에서는 적대적 생성 신경망 모델이 원본 이미지를 생성하기 위해 사용되는 계층별 역추론 공격 방법을 소개한다. MNIST 데이터셋으로 훈련된 적대적 생성 신경망 모델을 사용하여, 원본 이미지가 대상 모델의 계층을 통과하면서 얻은 중간 계층의 출력 데이터를 기반으로 원본 이미지를 재구성하고자 한다. GMI 의 공격 방식을 참고하여 공격 모델의 손실 함수를 구성한다. 손실 함수는 사전 손실 및 정체성 손실항을 포함하며, 역전파를 통해서 원본 이미지와 가장 유사하게 복원할 수 있는 표현 벡터 Z 를 찾는다. 원본 이미지와 공격 이미지 사이의 유사성을 분류 라벨의 정확도, SSIM, PSNR 값이라는 세 가지 지표를 사용하여 평가한다. 공격이 이루어지는 계층에서 복원한 이미지와 원본 이미지를 세 가지 지표를 가지고 평가한다. 실험 결과, 공격 이미지가 원본 이미지의 대상 분류 라벨을 정확하게 가지며 원본 이미지의 필체를 유사하게 복원하였음을 보여준다. 평가 지표 또한 원본 이미지와 유사하다는 것을 나타낸다.
허밍을 통한 유사 검색 질의가 주어질 때 효과적으로 음악 데이터베이스를 검색하는 시스템에 대한 연구는 다양한 방향으로 진행되어 왔다. 최근에는 음악 데이터와 허밍 질의를 시계열 데이터로 보고 시계열 데이터 유사 검색과 관련하여 제안되어 왔던 여러 가지 거리 척도(distance measure)나 인덱싱 기법등을 적용하여 효과적으로 질의를 처리하려는 시도가 계속 되고 있다. 허밍 질의의 특성을 고려한 균일 스케일링(Uniform Scaling)을 사용하여 효과적인 유사 검색을 하는 방법은 가장 최근 제시된 방법 중 하나이다. 본 논문에서는 허밍을 통한 유사 검색 시스템인 Humming BIRD(Humming Based similaR miDi music retrieval system)를 제안하고 구현하였다. 슬라이딩 윈도우를 사용하여 음악의 임의의 부분에 대한 허밍 질의를 처리할 수 있도록 하였으며 효율적인 검색을 위해 중심을 일치시킨(center-aligned) 균일 스케일링을 제안하고 이 거리의 하한을 계산하는 하계 함수를 사용하여 탐색 공간(search space)을 효과적으로 줄여 더 빠르고 효과적인 유사 검색을 가능하도록 하였으며 실험을 통해 중심을 일치시킨된 균일 스케일링이 이전과 같은 검색 결과를 얻으면서도 효과적으로 검색함을 탐색 공간을 줄이는 가지치기 성능을 비교함으로써 보였다.
자연어 이해는 대화 인터페이스나 정보 추출 등에 활용되는 핵심 기술 중 하나이다. 최근 딥러닝을 활용한 데이터 기반 자연어 이해 연구가 많이 이루어지고 있으며, 이러한 연구에 있어서 데이터 확장은 매우 중요한 역할을 하게 된다. 본 연구는 자연어 이해영역에서의 말뭉치 혹은 데이터 확장에 있어서, 입력으로 주어진 문장과 문법구조 및 의미가 유사한 문장을 생성하는 새로운 방법을 제시한다. 이를 위해, 우리는 GPT를 이용하여 대량의 문장을 생성하고, 문장과 문장 사이의 문법구조 및 의미 거리 계산법을 제시하여, 이를 이용해 가장 유사하지만 새로운 문장을 생성하는 방법을 취한다. 한국어 말뭉치 Weather와 영어 말뭉치 Atis, Snips, M2M-Movie M2M-Reservation을 이용하여 제안방법이 효과적임을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.