• Title/Summary/Keyword: 유사비디오 검색

Search Result 96, Processing Time 0.021 seconds

A Semantic-based Video Retrieval System using Design of Automatic Annotation Update and Categorizing (자동 주석 갱신 및 카테고라이징 기법을 이용한 의미기반 동영상 검색 시스템)

  • 김정재;이창수;이종희;전문석
    • Journal of the Korea Computer Industry Society
    • /
    • v.5 no.2
    • /
    • pp.203-216
    • /
    • 2004
  • In order to process video data effectively, it is required that the content information of video data is loaded in database and semantic- based retrieval method can be available for various query of users. Currently existent contents-based video retrieval systems search by single method such as annotation-based or feature-based retrieval, and show low search efficiency and requires many efforts of system administrator or annotator form less perfect automatic processing. In this paper, we propose semantic-based video retrieval system which support semantic retrieval of various users by feature-based retrieval and annotation-based retrieval of massive video data. By user's fundamental query and selection of image for key frame that extracted from query, the agent gives the detail shape for annotation of extracted key frame. Also, key frame selected by user become query image and searches the most similar key frame through feature based retrieval method that propose. Therefore, we design the system that can heighten retrieval efficiency of video data through semantic-based retrieval.

  • PDF

ECoMOT : An Efficient Content-based Multimedia Information Retrieval System Using Moving Objects' Trajectories in Video Data (ECoMOT : 비디오 데이터내의 이동체의 제적을 이용한 효율적인 내용 기반 멀티미디어 정보검색 시스템)

  • Shim Choon-Bo;Chang Jae-Woo;Shin Yong-Won;Park Byung-Rae
    • The KIPS Transactions:PartB
    • /
    • v.12B no.1 s.97
    • /
    • pp.47-56
    • /
    • 2005
  • A moving object has a various features that its spatial location, shape, and size are changed as time goes. In addition, the moving object has both temporal feature and spatial feature. It is one of the highly interested feature information in video data. In this paper, we propose an efficient content-based multimedia information retrieval system, so tailed ECoMOT which enables user to retrieve video data by using a trajectory information of moving objects in video data. The ECoMOT includes several novel techniques to achieve content-based retrieval using moving objects' trajectories : (1) Muitiple trajectory modeling technique to model the multiple trajectories composed of several moving objects; (2) Multiple similar trajectory retrieval technique to retrieve more similar trajectories by measuring similarity between a given two trajectories composed of several moving objects; (3) Superimposed signature-based trajectory indexing technique to effectively search corresponding trajectories from a large trajectory databases; (4) convenient trajectory extraction, query generation, and retrieval interface based on graphic user interface

A Novel Video Copy Detection Method based on Statistical Analysis (통계적 분석 기반 불법 비디오 영상 감식 방법)

  • Kim, Ji-Eun;Cho, Hye-Jung;Oh, Seoung-Jun
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.219-222
    • /
    • 2008
  • 본 논문은 공간영역 상에서 다양하게 변형된 복제 영상과 원본 영상간의 통계적 특성을 이용하여 그 유사도를 측정하고 복제 여부를 판단하는 계층적 구조의 불법 비디오 감식 방법을 제안한다. 영상의 대표적 특성인 명암도에 따라 순위를 매김으로써 공간적 변형에 영향을 받지 않도록 하였으며, 데이터베이스에 저장된 방대한 양의 영상들에 대한 검색 시간과 계산량을 줄이기 위해 순위 표본 프레임을 이용하여 유사한 후보 영상군을 추출한다. 이러한 후보 영상군을 대상으로 일반적인 불법복제 비디오의 형태를 감안하여 각 프레임의 중앙 영역을 포함하여 통계 검정을 이용함으로써 복제 여부를 판단한다. 실험 결과 제안하는 방법은 기존 방법과 유사한 정확도를 보이며 동시에 선택된 순위 표본 프레임 수는 약 50% 가량 적게 추출되어 검색 시간과 계산량이 감소하였다. 또한 영상의 화질 열화, 대비 변형, 확대 및 축소, letterbox 등 다양한 공간적 변형에도 포괄적으로 복제 여부를 판단할 수 있음을 실험을 통해 확인하였다.

  • PDF

Emotion-based Video Scene Retrieval using Interactive Genetic Algorithm (대화형 유전자 알고리즘을 이용한 감성기반 비디오 장면 검색)

  • Yoo Hun-Woo;Cho Sung-Bae
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.10 no.6
    • /
    • pp.514-528
    • /
    • 2004
  • An emotion-based video scene retrieval algorithm is proposed in this paper. First, abrupt/gradual shot boundaries are detected in the video clip representing a specific story Then, five video features such as 'average color histogram' 'average brightness', 'average edge histogram', 'average shot duration', and 'gradual change rate' are extracted from each of the videos and mapping between these features and the emotional space that user has in mind is achieved by an interactive genetic algorithm. Once the proposed algorithm has selected videos that contain the corresponding emotion from initial population of videos, feature vectors from the selected videos are regarded as chromosomes and a genetic crossover is applied over them. Next, new chromosomes after crossover and feature vectors in the database videos are compared based on the similarity function to obtain the most similar videos as solutions of the next generation. By iterating above procedures, new population of videos that user has in mind are retrieved. In order to show the validity of the proposed method, six example categories such as 'action', 'excitement', 'suspense', 'quietness', 'relaxation', 'happiness' are used as emotions for experiments. Over 300 commercial videos, retrieval results show 70% effectiveness in average.

Video Retrieval based on Objects Motion Trajectory (객체 이동 궤적 기반 비디오의 검색)

  • 유웅식;이규원;김재곤;김진웅;권오석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.5B
    • /
    • pp.913-924
    • /
    • 2000
  • This paper proposes an efficient descriptor for objects motion trajectory and a video retrieval algorithm based on objects motion trajectory. The algorithm describes parameters with coefficients of 2-order polynomial for objects motion trajectory after segmentation of the object from the scene. The algorithm also identifies types, intervals, and magnitude of global motion caused by camera motion and indexes them with 6-affine parameters. This paper implements content-based video retrieval using similarity-match between indexed parameters and queried ones for objects motion trajectory. The proposed algorithm will support not only faster retrieval for general videos but efficient operation for unmanned video surveillance system.

  • PDF

Soundtrack Search System for Interactive-Smart-Television (인터액티브 스마트 TV 적용을 위한 사운드트랙 검색 시스템)

  • Ryu, Sang-Hyeon;Cho, Jea-Man;Kim, Hyoung-Gook
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2011.07a
    • /
    • pp.202-203
    • /
    • 2011
  • 본 논문에서는 인터액티브 스마트 TV 적용을 위한 사운드트랙 검색 시스템을 제안한다. 제안하는 시스템은 동영상을 오디오와 비디오특징을 구분한 후, 각 오디오와 비디오 신호를 분석한다. 비디오 신호의 분석은 MPEG-2 비디오 인코더로부터 영상의 장면전환과 시작과 끝 위치를 검출하고, 오디오 신호의 분석은 AC-3 오디오 인코더로부터 오디오 특징을 추출한 후, 오디오 정보의 비트 벡터를 추출하여 데이터베이스를 생성한다. 생성된 데이터베이스와 사용자가 북마크를 하여 요청한 쿼리와 비교를 통하여 오디오 특징정보가 유사한 부분의 장면을 검색하고, 검색된 장면을 사용자에게 제공한다. 제안된 시스템의 성능 측정을 위해서 뉴스, 패널토론, 음악방송, 광고, 드라마 등 50개 TV 방송 프로그램의 데이터베이스를 이용해서 정확성을 측정하였다.

  • PDF

Study on the searching of images via clustering (이미지 데이타 클러스터링을 이용한 검색 연구)

  • Kim, Jin-Ok;Hwang, Dae-Joon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2002.04a
    • /
    • pp.97-100
    • /
    • 2002
  • 이미지, 비디오, 오디오와 같은 멀티미디어 데이터들은 텍스트기반의 데이터에 비하여 대용량이고 비정형적인 특성을 가지기 때문에 검색이 어렵다. 또한 멀티미디어 데이터의 특징은 행렬이나 벡터의 형태로 표현되기 때문에 완전일치 검색이 아닌 유사 검색을 수행하여 사용자가 원하는 이미지와 유사한 이미지를 검색해야 한다. 본 연구에서는 멀티미디어 데이터 검색에 클러스터링와 인덱싱 기법을 같이 적용하여 유사한 이미지끼리는 인접 디스크에 클러스터하고 이 클러스터에 접근하는 인덱스를 구축하여 검색이 빠르게 이루어지는 유사 검색방법을 제안한다 제안 검색 방법은 클러스터링을 생성하는 알고리즘과 해싱기법의 인덱싱을 같이 적용함으로써 VQ(Vector Quantization)보다 높은 재현율과 정확도를 보인다.

  • PDF

Key Frame Detection and Multimedia Retrieval on MPEG Video (MPEG 비디오 스트림에서의 대표 프레임 추출 및 멀티미디어 검색 기법)

  • 김영호;강대성
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.08a
    • /
    • pp.297-300
    • /
    • 2000
  • 본 논문에서는 MPEG 비디오 스트림을 분석하여 DCT DC 계수를 추출하고 이들로 구성된 DC 이미지로부터 제안하는 robust feature를 이용하여 shot을 구하고 각 feature들의 통계적 특성을 이용하여 스트림의 특징에 따라 weight를 부가하여 구해진 characterizing value의 시간변화량을 구한다. 구해진 변화량의 local maxima와 local minima는 MPEG 비디오 스트림에서 각각 가장 특징적인 frame과 평균적인 frame을 나타낸다. 이 순간의 frame을 구함으로서 효과적이고 빠른 시간 내에 key frame을 추출한다. 추출되어진 key frame에 대하여 원영상을 복원한 후, 색인을 위하여 다수의 parameter를 구하고 사용자가 질의한 영상에 대해서 이들 파라메터를 구하여 key frame들과 가장 유사한 대표영상들을 검색한다.

  • PDF

A Placement Policy improving Retrieval Efficiency of video streams in Clustered VOD Servers (클러스터드 주문형 비디오 서버에서 비디오 스트림의 검색효율을 높이는 배치정책)

  • 안유정;원유헌
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.9B
    • /
    • pp.1652-1660
    • /
    • 1999
  • One of the most important goals in VOD servers is to provide services to more clients with services which clients request. In order to provide service efficiently and rapidly, though considering a few of policies, efficient placement of data when they are stored is direct cause to improve efficiency of retrievals. In this paper, we propose a efficient placement policy, encoded video data being stored in clustered VOD servers. In the proposed placement policy, partitioning a large disk array into smaller disk groups which consists of a few of disks with similar performances, specially disk I/O bandwidth. In last chapter, we compare proposed placement policy with conventional policies, and show the results of improved performances with proposed policy.

  • PDF

Improvement of Retrieval Performance Using Adaptive Weighting of Key Frame Features (키 프레임 특징들에 적응적 가중치 부여를 이용한 검색 성능 개선)

  • Kim, Kang-Wook
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.1
    • /
    • pp.26-33
    • /
    • 2014
  • Video retrieval and indexing are performed by comparing feature similarities between key frames in shot after detecting a scene change and extracting key frames from the shot. Typical image features such as color, shape, and texture are used in content-based video and image retrieval. Many approaches for integrating these features have been studied. However, the issue of these approaches is how to appropriately assign weighting of key frame features at query time. Therefore, we propose a new video retrieval method using adaptively weighted image features. We performed computer simulations in test databases which consist of various kinds of key frames. The experimental results show that the proposed method has better performance than previous works in respect to several performance evaluations such as precision vs. recall, retrieval efficiency, and ranking measure.