In order to process video data effectively, it is required that the content information of video data is loaded in database and semantic- based retrieval method can be available for various query of users. Currently existent contents-based video retrieval systems search by single method such as annotation-based or feature-based retrieval, and show low search efficiency and requires many efforts of system administrator or annotator form less perfect automatic processing. In this paper, we propose semantic-based video retrieval system which support semantic retrieval of various users by feature-based retrieval and annotation-based retrieval of massive video data. By user's fundamental query and selection of image for key frame that extracted from query, the agent gives the detail shape for annotation of extracted key frame. Also, key frame selected by user become query image and searches the most similar key frame through feature based retrieval method that propose. Therefore, we design the system that can heighten retrieval efficiency of video data through semantic-based retrieval.
A moving object has a various features that its spatial location, shape, and size are changed as time goes. In addition, the moving object has both temporal feature and spatial feature. It is one of the highly interested feature information in video data. In this paper, we propose an efficient content-based multimedia information retrieval system, so tailed ECoMOT which enables user to retrieve video data by using a trajectory information of moving objects in video data. The ECoMOT includes several novel techniques to achieve content-based retrieval using moving objects' trajectories : (1) Muitiple trajectory modeling technique to model the multiple trajectories composed of several moving objects; (2) Multiple similar trajectory retrieval technique to retrieve more similar trajectories by measuring similarity between a given two trajectories composed of several moving objects; (3) Superimposed signature-based trajectory indexing technique to effectively search corresponding trajectories from a large trajectory databases; (4) convenient trajectory extraction, query generation, and retrieval interface based on graphic user interface
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2008.11a
/
pp.219-222
/
2008
본 논문은 공간영역 상에서 다양하게 변형된 복제 영상과 원본 영상간의 통계적 특성을 이용하여 그 유사도를 측정하고 복제 여부를 판단하는 계층적 구조의 불법 비디오 감식 방법을 제안한다. 영상의 대표적 특성인 명암도에 따라 순위를 매김으로써 공간적 변형에 영향을 받지 않도록 하였으며, 데이터베이스에 저장된 방대한 양의 영상들에 대한 검색 시간과 계산량을 줄이기 위해 순위 표본 프레임을 이용하여 유사한 후보 영상군을 추출한다. 이러한 후보 영상군을 대상으로 일반적인 불법복제 비디오의 형태를 감안하여 각 프레임의 중앙 영역을 포함하여 통계 검정을 이용함으로써 복제 여부를 판단한다. 실험 결과 제안하는 방법은 기존 방법과 유사한 정확도를 보이며 동시에 선택된 순위 표본 프레임 수는 약 50% 가량 적게 추출되어 검색 시간과 계산량이 감소하였다. 또한 영상의 화질 열화, 대비 변형, 확대 및 축소, letterbox 등 다양한 공간적 변형에도 포괄적으로 복제 여부를 판단할 수 있음을 실험을 통해 확인하였다.
An emotion-based video scene retrieval algorithm is proposed in this paper. First, abrupt/gradual shot boundaries are detected in the video clip representing a specific story Then, five video features such as 'average color histogram' 'average brightness', 'average edge histogram', 'average shot duration', and 'gradual change rate' are extracted from each of the videos and mapping between these features and the emotional space that user has in mind is achieved by an interactive genetic algorithm. Once the proposed algorithm has selected videos that contain the corresponding emotion from initial population of videos, feature vectors from the selected videos are regarded as chromosomes and a genetic crossover is applied over them. Next, new chromosomes after crossover and feature vectors in the database videos are compared based on the similarity function to obtain the most similar videos as solutions of the next generation. By iterating above procedures, new population of videos that user has in mind are retrieved. In order to show the validity of the proposed method, six example categories such as 'action', 'excitement', 'suspense', 'quietness', 'relaxation', 'happiness' are used as emotions for experiments. Over 300 commercial videos, retrieval results show 70% effectiveness in average.
The Journal of Korean Institute of Communications and Information Sciences
/
v.25
no.5B
/
pp.913-924
/
2000
This paper proposes an efficient descriptor for objects motion trajectory and a video retrieval algorithm based on objects motion trajectory. The algorithm describes parameters with coefficients of 2-order polynomial for objects motion trajectory after segmentation of the object from the scene. The algorithm also identifies types, intervals, and magnitude of global motion caused by camera motion and indexes them with 6-affine parameters. This paper implements content-based video retrieval using similarity-match between indexed parameters and queried ones for objects motion trajectory. The proposed algorithm will support not only faster retrieval for general videos but efficient operation for unmanned video surveillance system.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2011.07a
/
pp.202-203
/
2011
본 논문에서는 인터액티브 스마트 TV 적용을 위한 사운드트랙 검색 시스템을 제안한다. 제안하는 시스템은 동영상을 오디오와 비디오특징을 구분한 후, 각 오디오와 비디오 신호를 분석한다. 비디오 신호의 분석은 MPEG-2 비디오 인코더로부터 영상의 장면전환과 시작과 끝 위치를 검출하고, 오디오 신호의 분석은 AC-3 오디오 인코더로부터 오디오 특징을 추출한 후, 오디오 정보의 비트 벡터를 추출하여 데이터베이스를 생성한다. 생성된 데이터베이스와 사용자가 북마크를 하여 요청한 쿼리와 비교를 통하여 오디오 특징정보가 유사한 부분의 장면을 검색하고, 검색된 장면을 사용자에게 제공한다. 제안된 시스템의 성능 측정을 위해서 뉴스, 패널토론, 음악방송, 광고, 드라마 등 50개 TV 방송 프로그램의 데이터베이스를 이용해서 정확성을 측정하였다.
Proceedings of the Korea Information Processing Society Conference
/
2002.04a
/
pp.97-100
/
2002
이미지, 비디오, 오디오와 같은 멀티미디어 데이터들은 텍스트기반의 데이터에 비하여 대용량이고 비정형적인 특성을 가지기 때문에 검색이 어렵다. 또한 멀티미디어 데이터의 특징은 행렬이나 벡터의 형태로 표현되기 때문에 완전일치 검색이 아닌 유사 검색을 수행하여 사용자가 원하는 이미지와 유사한 이미지를 검색해야 한다. 본 연구에서는 멀티미디어 데이터 검색에 클러스터링와 인덱싱 기법을 같이 적용하여 유사한 이미지끼리는 인접 디스크에 클러스터하고 이 클러스터에 접근하는 인덱스를 구축하여 검색이 빠르게 이루어지는 유사 검색방법을 제안한다 제안 검색 방법은 클러스터링을 생성하는 알고리즘과 해싱기법의 인덱싱을 같이 적용함으로써 VQ(Vector Quantization)보다 높은 재현율과 정확도를 보인다.
Proceedings of the Korea Institute of Convergence Signal Processing
/
2000.08a
/
pp.297-300
/
2000
본 논문에서는 MPEG 비디오 스트림을 분석하여 DCT DC 계수를 추출하고 이들로 구성된 DC 이미지로부터 제안하는 robust feature를 이용하여 shot을 구하고 각 feature들의 통계적 특성을 이용하여 스트림의 특징에 따라 weight를 부가하여 구해진 characterizing value의 시간변화량을 구한다. 구해진 변화량의 local maxima와 local minima는 MPEG 비디오 스트림에서 각각 가장 특징적인 frame과 평균적인 frame을 나타낸다. 이 순간의 frame을 구함으로서 효과적이고 빠른 시간 내에 key frame을 추출한다. 추출되어진 key frame에 대하여 원영상을 복원한 후, 색인을 위하여 다수의 parameter를 구하고 사용자가 질의한 영상에 대해서 이들 파라메터를 구하여 key frame들과 가장 유사한 대표영상들을 검색한다.
The Journal of Korean Institute of Communications and Information Sciences
/
v.24
no.9B
/
pp.1652-1660
/
1999
One of the most important goals in VOD servers is to provide services to more clients with services which clients request. In order to provide service efficiently and rapidly, though considering a few of policies, efficient placement of data when they are stored is direct cause to improve efficiency of retrievals. In this paper, we propose a efficient placement policy, encoded video data being stored in clustered VOD servers. In the proposed placement policy, partitioning a large disk array into smaller disk groups which consists of a few of disks with similar performances, specially disk I/O bandwidth. In last chapter, we compare proposed placement policy with conventional policies, and show the results of improved performances with proposed policy.
Video retrieval and indexing are performed by comparing feature similarities between key frames in shot after detecting a scene change and extracting key frames from the shot. Typical image features such as color, shape, and texture are used in content-based video and image retrieval. Many approaches for integrating these features have been studied. However, the issue of these approaches is how to appropriately assign weighting of key frame features at query time. Therefore, we propose a new video retrieval method using adaptively weighted image features. We performed computer simulations in test databases which consist of various kinds of key frames. The experimental results show that the proposed method has better performance than previous works in respect to several performance evaluations such as precision vs. recall, retrieval efficiency, and ranking measure.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.