• 제목/요약/키워드: 유사거리 측정

검색결과 343건 처리시간 0.026초

조건부 확률에 기반한 범주형 자료의 거리 측정 (A distance metric of nominal attribute based on conditional probability)

  • 이재호;우종하;오경환
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 추계 학술대회 학술발표 논문집
    • /
    • pp.53-56
    • /
    • 2003
  • 유사도 혹은 자료간의 거리 개념은 많은 기계학습 알고리즘에서 사용되고 있는 중요한 측정개념이다 하지만 입력되는 자료의 속성들중 순서가 정의되지 않은 범주형 속성이 포함되어 있는 경우, 자료간의 유사도나 거리 측정에 어려움이 따른다. 비거리 기반의 알고리즘들의 경우-C4.5, CART-거리의 측정없이 작동할 수 있지만, 거리기반의 알고리즘들의 경우 범주형 속성의 거리 정보 결여로 효과적으로 적용될 수 없는 문제점을 갖고 있다. 본 논문에서는 이러한 범주형 자료들간 거리 측정을 자료 집합의 특성을 충분히 고려한 방법을 제안한다. 이를 위해 자료 집합의 선험적인 정보를 필요로 한다. 이런 선험적 정보인 조건부 확률을 기반으로한 거리 측정방법을 제시하고 오류 피드백을 통해서 속성 간 거리 측정을 최적화 하려고 노력한다. 주어진 자료 집합에 대해 서로 다른 두 범주형 값이 목적 속성에 대해서 유사한 분포를 보인다면 이들 값들은 비교적 가까운 거리로 결정한다 이렇게 결정된 거리를 기반으로 학습 단계를 진행하며 이때 발생한 오류들에 대해 피드백 작업을 진행한다. UCI Machine Learning Repository의 자료들을 이용한 실험 결과를 통해 제안한 거리 측정 방법의 우수한 성능을 확인하였다.

  • PDF

바타챠랴 거리 측정법을 이용한 음소 유사율 오류 보정 개선 시스템 (Phoneme Similarity Error Correction System using Bhattacharyya Distance Measurement Method)

  • 안찬식;오상엽
    • 한국컴퓨터정보학회논문지
    • /
    • 제15권6호
    • /
    • pp.73-80
    • /
    • 2010
  • 어휘 인식 시스템은 부정확한 어휘 제공과 유사한 음소 인식으로 인식률이 저하되며 이는 유사한 음소인식 오인식과 효율적 특징 추출 처리를 위한 방법을 필요로 한다. 따라서 본 논문에서는 음소가 갖는 특징을 기반으로 바타챠랴 거리 측정법을 이용한 음소 유사율 오류 보정 개선 시스템을 제안하였다. 음소 유사율은 모노폰으로 훈련시킨 훈련 데이터의 음소에 HMM 특징 추출 방법을 이용하였으며 유사한 음소는 바타챠랴 거리 측정법을 이용하여 정확한 음소로 인식할 수 있도록 유도하여 인식률 향상 효과를 얻을 수 있었다. 이를 유클리디안 거리 측정법과 동적타임 워핑 시스템에 비교한 시스템 성능 평가 결과 1.2%의 향상된 97.91% 인식률을 보였다.

구매이력 데이터에서 상품 분류 체계를 고려한 시퀀스 유사도 측정 기법 (A Sequence Similarity Measure Considering the Product Taxonomy in Transaction Data)

  • 양유정;이기용
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2019년도 춘계학술발표대회
    • /
    • pp.367-370
    • /
    • 2019
  • 본 논문은 구매이력 데이터에서 상품간의 분류 체계를 고려하여 시퀀스 간의 유사도를 계산하는 새로운 방법을 제안한다. 시퀀스란 두 항목간의 순서가 존재하는 데이터를 의미한다. 항목 간의 선후관계가 중요한 시퀀스 데이터에서는 두 시퀀스 간의 유사도를 정확히 정의하는 것이 중요하다. 본 논문에서는 대표적인 시퀀스 유사도 측정 알고리즘인 편집 거리 알고리즘을 활용하여 구매이력 데이터에서 시퀀스 간의 유사도를 정의한다. 상품은 상품의 특성에 따라 항목 분류 체계에서 여러 범주로 분류된다. 이 경우 기존의 편집 거리 알고리즘에서 문자의 일치유무에 따라 단순히 0 또는 1을 부여하는 것은 부정확하다. 따라서 본 논문은 편집 거리 알고리즘의 수정 연산 중 대체 연산 비용 계산 시 항목 분류 트리를 사용하여 연산 비용이 0 에서 1 사이의 값을 가지도록 세분화하였다. 실험 결과 제안 방법은 대체 연산 비용 계산 시 두 문자가 다르면 단순히 1 을 부여하는 기존의 편집 거리 알고리즘에 비해 시퀀스 간의 유사도를 더 정확하게 계산함을 확인하였다.

거리 측도를 이용한 퍼지 엔트로피와 유사측도의 구성 (Construction of Fuzzy Entropy and Similarity Measure with Distance Measure)

  • 이상혁;김성신
    • 한국지능시스템학회논문지
    • /
    • 제15권5호
    • /
    • pp.521-526
    • /
    • 2005
  • 모호함의 측도를 위하여 퍼지 엔트로피와 거리측도 그리고 유사측도와의 관계를 이용하여 새로운 퍼지 측도를 제안하였다. 제안된 퍼지 엔트로피는 거리측도를 이용하여 구성된다. 거리측도는 일반적으로 사용되는 해밍 거리를 이용하였다. 또한 집합사이의 유사성을 측정하기 위한 유사측도를 거리 측도를 이용하여 구성하였고, 제안한 퍼지 엔트로피와 유사측도를 증명을 통하여 타당성을 확인하였다.

LOD-기반 추천 시스템에서 LOD 그래프에 가중치를 사용한 의미 거리 측정 모델 (A Semantic Distance Measurement Model using Weights on the LOD Graph in an LOD-based Recommender System)

  • 허원회
    • 한국융합학회논문지
    • /
    • 제12권7호
    • /
    • pp.53-60
    • /
    • 2021
  • LOD-기반 추천 시스템은 보통 DBpedia와 같은 LOD 데이터세트 내에서 사용가능한 데이터를 활용하여 최종 사용자에게 영화, 책, 음악과 같은 아이템을 추천한다. 이러한 시스템은 링크드 데이터 리소스 쌍 간의 일치 정도를 측정하는 의미 유사도 알고리즘을 사용한다. 이 논문에서는 LOD 그래프의 링크에 사용자 평가 등급을 변환한 가중치를 할당하여 LOD-기반 추천 시스템에서 의미 거리를 측정하는 새로운 접근방식을 제안했다. 이 논문에서 제안된 의미 거리 측정 모델은 가중치 계산을 통해 그래프가 사용자에게 개인화되는 처리 단계와 이러한 가중치를 LDSD에 적용하는 방법을 기반으로 한다. 실험 결과는 다른 유사한 방법들과 비교하여 제안된 방법이 더 높은 정확도를 보였으며, 추천 시스템의 의미 거리 측정의 범위를 넓혀서 유사도 향상에 기여하였다. 향후 연구로는 다른 방법의 LOD-기반 유사도 측정을 사용하여 모델에 미치는 영향을 분석하는 것을 목표로 한다.

신뢰성 있는 정보의 추출을 위한 퍼지집합의 유사측도 구성 (Similarity Measure Construction of the Fuzzy Set for the Reliable Data Selection)

  • 이상혁
    • 한국통신학회논문지
    • /
    • 제30권9C호
    • /
    • pp.854-859
    • /
    • 2005
  • 모호함의 측도를 위하여 퍼지 엔트로피와 거리측도 그리고 유사측도와의 관계를 이용하여 새로운 퍼지 측도를 제안하였다. 제안된 퍼지 엔트로피는 거리측도를 이용하여 구성된다. 거리측도는 일반적으로 사용되는 해밍 거리를 이용하였다. 또한 집합사이의 유사성을 측정하기 위한 유사측도를 거리 측도를 이용하여 구성하였고, 제안한 퍼지 엔트로피와 유사측도를 증명을 통하여 타당성을 확인하였다.

수치 데이터 분포에 적응적 유클리드 거리 측정 기법 (Adaptive Euclidean Distance Measure Method for Numeric Data Distribution)

  • 최유환;조범준;정성원
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2011년도 한국컴퓨터종합학술대회논문집 Vol.38 No.1(C)
    • /
    • pp.67-69
    • /
    • 2011
  • 데이터의 군집 분석에서 두 개의 서로 다른 데이터에 대한 유사도(거리)를 어떻게 정의하는가는 매우 중요한 문제이다. 수치속성에 대한 거리 측정 방법에는 다양한 기법이 존재하지만 각 속성의 크기와 범위가 서로 크게 다를 경우 이들을 동일한 인자로 여기고 거리 측정을 하게 되면 논리적인 오류를 범할 수 있다. 기존의 군집 분석 연구에서 사용된 거리 측정 기법은 데이터의 정규화 과정을 통해 이 문제를 해결하려고 노력하지만 일반적인 정규화는 이상치의 존재나 데이터의 편중된 분포 등의 이유로 속성별 거리가 왜곡될 수 있다. 본 논문은 이러한 문제점을 해결하기 위해 정규화된 데이터에서 각 속성의 비중을 고려한 적응적 유클리드 거리 측정 기법(AEDM: Adaptive Euclidean Distance Measure)을 제안한다. AEDM은 유클리드 거리를 기반으로 정규화 된 데이터의 형태에 따라 가중치를 부여하여 데이터의 분포에 관계없이 각 속성간의 거리를 충분히 반영하기 때문에 더욱 정확한 군집 분석을 가능하게 한다.

비평형 유사이송 모의를 위한 적응거리계수 산정 공식 비교 (Comparison of adaptation length coefficient equations for nonequilibrium sediment transport simulation)

  • 정안철;김성원;안현욱;장창래;정관수
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2018년도 학술발표회
    • /
    • pp.76-76
    • /
    • 2018
  • 하천에서의 유사이송과 하상변동을 분석하는 대표적인 방법으로는 현장에서 유사량이나 하상고를 측정하여 분석하는 실측에 의한 방법, 수리모형 실험과 수치모형을 이용하는 방법이 있다. 이 중에서 실측에 의한 방법은 시간과 비용의 한계로 수치해석모형을 이용한 연구가 많이 이루어 지고 있다. 현재까지 개발된 다양한 하상변동 수치모형들은 유사이송 상태를 평형 유사이송 상태를 가정하고 개발되어 왔다. 평형 유사이송은 흐름과 하상재료 등의 조건이 발생시킬 수 있는 유사이송능력과 실제 유사이송률이 동일하다고 가정하는 것이다. 그러나, 실제 유사이송에서는 흐름 및 지형 등의 변화에 따라서 지속적으로 새롭게 형성되는 유사이송능력에 실제 유사이송률이 빠르게 도달하지 못하면서 유사이송능력과 유사이송률 사이에 시 공간의 격차가 발생하게 된다. 이러한 상황을 비평형 유사이송이라고 하며 지속적인 하상 상승 및 저하가 발생하는 구간, 댐과 같은 구조물에 의해서 유사의 연속성이 차단되는 구간, 하상재료가 불연속한 구간 등에서 주로 발생하는 것으로 알려져 있다. 비평형 유사이송을 수학적으로 모의하기 위한 대표적인 방법에는 적응거리계수와 회복계수를 이용하는 방법이 있다. 위의 계수들은 흐름 및 하상 특성을 이용하여 공간에 대한 유사이송의 지체현상을 고려하는 방법으로 이를 산정하기 위한 다양한 공식들이 제시되고 있다. 그러나, 각 공식들에 의해서 제시되는 값에 많은 차이가 있는 것으로 알려져 있다. 본 연구에서는 실내실험과 수치실험을 통해서 평형/비평형 유사이송 및 집중형/분포형 적응거리계수를 고려한 모의 결과를 비교하였으며, 적응거리계수 산정공식에 따른 비평형 유사이송 모의 결과를 비교하였다. 본 연구에서 적용한 실내실험에 대해서는 평형 유사이송보다는 비평형 유사이송을 고려한 경우와 비평형 유사이송 공식을 이용하여 적응거리계수를 분포형 매개변수로 이용하는 경우가 실제 하상변동 모의 결과에 더 근접한 수치실험 결과를 제공하는 것으로 나타났다.

  • PDF

컬러 채널 간 유사도 측정을 통한 디지털 카메라의 자동초점 기법 (Inter-channel similarity measure for autofocus on digital camera with divided aperture)

  • 고광현;국중갑;최우석;조남익
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2010년도 하계학술대회
    • /
    • pp.400-403
    • /
    • 2010
  • 본 논문에서는 디지털 카메라의 자동초점 속도를 향상시키는 새로운 기법을 제안한다. 제안된 방식은 위상차 검출 방식에서 사용되는 추가적인 자동초점 모듈을 장착하지 않으면서도 빠르게 초점이 맞는 위치의 거리와 방향을 계산할 수 있는데, 이는 이중 분할 조리개를 이용하여 위상차가 발생하도록 하고, 컬러 필터를 이용하여 분리함으로써 소프트웨어 영상 처리만으로 위상차를 측정하여 정확한 초점 위치를 찾을 수 있기 때문이다. 이중 분할 조리개에 의해서 발생한 컬러 영상 채널 간의 상이한 정도를 측정하기 위하여 초점이 맞는 정도를 수치화 할 수 있는 유사도 측정 기준을 제시하는데, 이 기준으로 측정된 유사도를 비교함으로써 불일치 정도를 추출하며 정확한 초점을 잡기 위한 거리와 방향을 계산한다. 실험에서는 상용 디지털 카메라를 개조한 프로토 타입에서 취득한 영상을 사용하여 제안한 방식의 유효성을 검증하였다.

  • PDF

상품 분류 체계를 고려한 구매이력 유사도 측정 기법 (Purchase Transaction Similarity Measure Considering Product Taxonomy)

  • 양유정;이기용
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제8권9호
    • /
    • pp.363-372
    • /
    • 2019
  • 시퀀스란 두 항목 간의 순서가 존재하는 데이터를 말하며, 고객 한 명이 구매한 상품들이 나열된 구매이력 데이터는 대표적인 시퀀스 데이터 중 하나이다. 일반적으로 모든 상품은 대분류/ 중분류/ 소분류와 같은 상품 분류 체계를 가지며, 서로 다른 상품이더라도 비슷하다면 그 특성에 따라 동일한 범주로 분류된다. 따라서 본 논문에서는 두 구매이력 시퀀스 비교 시 상품의 구매 순서를 고려할 뿐만 아니라, 비교하고자 하는 두 상품이 다르더라도 서로 동일한 상품 군에 속한다면 더 높은 유사도를 부여하여 계산한다. 특히 구매이력 시퀀스 유사도 계산 성능에 직접적인 영향을 미치는 시퀀스 유사도 측정 방법을 선택하기 위해 본 연구에서는 대표적인 시퀀스 간 유사도 측정 방법인 레벤슈타인 거리, 동적 타임 워핑 거리, 니들만-브니쉬 유사도의 성능을 비교하였으며, 항목간의 계층구조도 반영하여 계산하도록 확장하였다. 기존의 유사도 측정 방법의 경우 시퀀스 내 상품 비교 시 상품의 일치 유무에 따라 단순히 0 또는 1의 값을 부여하여 계산한다. 하지만 제안 방법의 경우 서로 다른 상품이더라도 두 상품 간의 연관정도를 다르게 부여하기 위하여 상품 분류 트리를 사용하여 0에서 1 사이의 값을 가지도록 세분화하였다. 실험을 통해 세 알고리즘에 제안 방법을 적용한 경우 기존 방법에 비하여 구매이력 시퀀스 간의 유사도를 더 정확히 측정함을 확인하였다. 또한 정확성 측정 비교 실험을 통해 동적 타임 워핑 유사도가 다른 두 유사도 측정 방법에 비하여 시퀀스 내 상품의 연관 정도를 고려할 뿐만 아니라 두 시퀀스의 길이가 다른 경우에도 좋은 성능을 보였기 때문에 구매이력 데이터에서 시퀀스 간의 유사도 비교 시 가장 적합한 측정 방법임을 확인하였다.