Proceedings of the Korean Institute of Intelligent Systems Conference
/
2003.09b
/
pp.53-56
/
2003
유사도 혹은 자료간의 거리 개념은 많은 기계학습 알고리즘에서 사용되고 있는 중요한 측정개념이다 하지만 입력되는 자료의 속성들중 순서가 정의되지 않은 범주형 속성이 포함되어 있는 경우, 자료간의 유사도나 거리 측정에 어려움이 따른다. 비거리 기반의 알고리즘들의 경우-C4.5, CART-거리의 측정없이 작동할 수 있지만, 거리기반의 알고리즘들의 경우 범주형 속성의 거리 정보 결여로 효과적으로 적용될 수 없는 문제점을 갖고 있다. 본 논문에서는 이러한 범주형 자료들간 거리 측정을 자료 집합의 특성을 충분히 고려한 방법을 제안한다. 이를 위해 자료 집합의 선험적인 정보를 필요로 한다. 이런 선험적 정보인 조건부 확률을 기반으로한 거리 측정방법을 제시하고 오류 피드백을 통해서 속성 간 거리 측정을 최적화 하려고 노력한다. 주어진 자료 집합에 대해 서로 다른 두 범주형 값이 목적 속성에 대해서 유사한 분포를 보인다면 이들 값들은 비교적 가까운 거리로 결정한다 이렇게 결정된 거리를 기반으로 학습 단계를 진행하며 이때 발생한 오류들에 대해 피드백 작업을 진행한다. UCI Machine Learning Repository의 자료들을 이용한 실험 결과를 통해 제안한 거리 측정 방법의 우수한 성능을 확인하였다.
Journal of the Korea Society of Computer and Information
/
v.15
no.6
/
pp.73-80
/
2010
Vocabulary recognition system is providing inaccurate vocabulary and similar phoneme recognition due to reduce recognition rate. It's require method of similar phoneme recognition unrecognized and efficient feature extraction process. Therefore in this paper propose phoneme likelihood error correction improvement system using based on phoneme feature Bhattacharyya distance measurement. Phoneme likelihood is monophone training data phoneme using HMM feature extraction method, similar phoneme is induced recognition able to accurate phoneme using Bhattacharyya distance measurement. They are effective recognition rate improvement. System performance comparison as a result of recognition improve represent 1.2%, 97.91% by Euclidean distance measurement and dynamic time warping(DTW) system.
Proceedings of the Korea Information Processing Society Conference
/
2019.05a
/
pp.367-370
/
2019
본 논문은 구매이력 데이터에서 상품간의 분류 체계를 고려하여 시퀀스 간의 유사도를 계산하는 새로운 방법을 제안한다. 시퀀스란 두 항목간의 순서가 존재하는 데이터를 의미한다. 항목 간의 선후관계가 중요한 시퀀스 데이터에서는 두 시퀀스 간의 유사도를 정확히 정의하는 것이 중요하다. 본 논문에서는 대표적인 시퀀스 유사도 측정 알고리즘인 편집 거리 알고리즘을 활용하여 구매이력 데이터에서 시퀀스 간의 유사도를 정의한다. 상품은 상품의 특성에 따라 항목 분류 체계에서 여러 범주로 분류된다. 이 경우 기존의 편집 거리 알고리즘에서 문자의 일치유무에 따라 단순히 0 또는 1을 부여하는 것은 부정확하다. 따라서 본 논문은 편집 거리 알고리즘의 수정 연산 중 대체 연산 비용 계산 시 항목 분류 트리를 사용하여 연산 비용이 0 에서 1 사이의 값을 가지도록 세분화하였다. 실험 결과 제안 방법은 대체 연산 비용 계산 시 두 문자가 다르면 단순히 1 을 부여하는 기존의 편집 거리 알고리즘에 비해 시퀀스 간의 유사도를 더 정확하게 계산함을 확인하였다.
Journal of the Korean Institute of Intelligent Systems
/
v.15
no.5
/
pp.521-526
/
2005
The fuzzy entropy is proposed for measuring of uncertainty with the help of relation between distance measure and similarity measure. The proposed fuzzy entropy is constructed through a distance measure. In this study, Hamming distance measure is employed for a distance measure. Also a similarity measure is constructed through a distance measure for the measure of similarity between fuzzy sets or crisp sets and the proposed fuzzy entropies and similarity measures are proved.
LOD-based recommender systems usually leverage the data available within LOD datasets, such as DBpedia, in order to recommend items(movies, books, music) to the end users. These systems use a semantic similarity algorithm that calculates the degree of matching between pairs of Linked Data resources. In this paper, we proposed a new approach to measuring semantic distance in an LOD-based recommender system by assigning weights converted from user ratings to links in the LOD graph. The semantic distance measurement model proposed in this paper is based on a processing step in which a graph is personalized to a user through weight calculation and a method of applying these weights to LDSD. The Experimental results showed that the proposed method showed higher accuracy compared to other similar methods, and it contributed to the improvement of similarity by expanding the range of semantic distance measurement of the recommender system. As future work, we aim to analyze the impact on the model using different methods of LOD-based similarity measurement.
The Journal of Korean Institute of Communications and Information Sciences
/
v.30
no.9C
/
pp.854-859
/
2005
We construct the fuzzy entropy for measuring of uncertainty with the help of relation between distance measure and similarity measure. Proposed fuzzy entropy is constructed through distance measure. In this study, the distance measure is used Hamming distance measure. Also for the measure of similarity between fuzzy sets or crisp sets, we construct similarity measure through distance measure, and the proposed 려zzy entropies and similarity measures are proved.
Proceedings of the Korean Information Science Society Conference
/
2011.06c
/
pp.67-69
/
2011
데이터의 군집 분석에서 두 개의 서로 다른 데이터에 대한 유사도(거리)를 어떻게 정의하는가는 매우 중요한 문제이다. 수치속성에 대한 거리 측정 방법에는 다양한 기법이 존재하지만 각 속성의 크기와 범위가 서로 크게 다를 경우 이들을 동일한 인자로 여기고 거리 측정을 하게 되면 논리적인 오류를 범할 수 있다. 기존의 군집 분석 연구에서 사용된 거리 측정 기법은 데이터의 정규화 과정을 통해 이 문제를 해결하려고 노력하지만 일반적인 정규화는 이상치의 존재나 데이터의 편중된 분포 등의 이유로 속성별 거리가 왜곡될 수 있다. 본 논문은 이러한 문제점을 해결하기 위해 정규화된 데이터에서 각 속성의 비중을 고려한 적응적 유클리드 거리 측정 기법(AEDM: Adaptive Euclidean Distance Measure)을 제안한다. AEDM은 유클리드 거리를 기반으로 정규화 된 데이터의 형태에 따라 가중치를 부여하여 데이터의 분포에 관계없이 각 속성간의 거리를 충분히 반영하기 때문에 더욱 정확한 군집 분석을 가능하게 한다.
Proceedings of the Korea Water Resources Association Conference
/
2018.05a
/
pp.76-76
/
2018
하천에서의 유사이송과 하상변동을 분석하는 대표적인 방법으로는 현장에서 유사량이나 하상고를 측정하여 분석하는 실측에 의한 방법, 수리모형 실험과 수치모형을 이용하는 방법이 있다. 이 중에서 실측에 의한 방법은 시간과 비용의 한계로 수치해석모형을 이용한 연구가 많이 이루어 지고 있다. 현재까지 개발된 다양한 하상변동 수치모형들은 유사이송 상태를 평형 유사이송 상태를 가정하고 개발되어 왔다. 평형 유사이송은 흐름과 하상재료 등의 조건이 발생시킬 수 있는 유사이송능력과 실제 유사이송률이 동일하다고 가정하는 것이다. 그러나, 실제 유사이송에서는 흐름 및 지형 등의 변화에 따라서 지속적으로 새롭게 형성되는 유사이송능력에 실제 유사이송률이 빠르게 도달하지 못하면서 유사이송능력과 유사이송률 사이에 시 공간의 격차가 발생하게 된다. 이러한 상황을 비평형 유사이송이라고 하며 지속적인 하상 상승 및 저하가 발생하는 구간, 댐과 같은 구조물에 의해서 유사의 연속성이 차단되는 구간, 하상재료가 불연속한 구간 등에서 주로 발생하는 것으로 알려져 있다. 비평형 유사이송을 수학적으로 모의하기 위한 대표적인 방법에는 적응거리계수와 회복계수를 이용하는 방법이 있다. 위의 계수들은 흐름 및 하상 특성을 이용하여 공간에 대한 유사이송의 지체현상을 고려하는 방법으로 이를 산정하기 위한 다양한 공식들이 제시되고 있다. 그러나, 각 공식들에 의해서 제시되는 값에 많은 차이가 있는 것으로 알려져 있다. 본 연구에서는 실내실험과 수치실험을 통해서 평형/비평형 유사이송 및 집중형/분포형 적응거리계수를 고려한 모의 결과를 비교하였으며, 적응거리계수 산정공식에 따른 비평형 유사이송 모의 결과를 비교하였다. 본 연구에서 적용한 실내실험에 대해서는 평형 유사이송보다는 비평형 유사이송을 고려한 경우와 비평형 유사이송 공식을 이용하여 적응거리계수를 분포형 매개변수로 이용하는 경우가 실제 하상변동 모의 결과에 더 근접한 수치실험 결과를 제공하는 것으로 나타났다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2010.07a
/
pp.400-403
/
2010
본 논문에서는 디지털 카메라의 자동초점 속도를 향상시키는 새로운 기법을 제안한다. 제안된 방식은 위상차 검출 방식에서 사용되는 추가적인 자동초점 모듈을 장착하지 않으면서도 빠르게 초점이 맞는 위치의 거리와 방향을 계산할 수 있는데, 이는 이중 분할 조리개를 이용하여 위상차가 발생하도록 하고, 컬러 필터를 이용하여 분리함으로써 소프트웨어 영상 처리만으로 위상차를 측정하여 정확한 초점 위치를 찾을 수 있기 때문이다. 이중 분할 조리개에 의해서 발생한 컬러 영상 채널 간의 상이한 정도를 측정하기 위하여 초점이 맞는 정도를 수치화 할 수 있는 유사도 측정 기준을 제시하는데, 이 기준으로 측정된 유사도를 비교함으로써 불일치 정도를 추출하며 정확한 초점을 잡기 위한 거리와 방향을 계산한다. 실험에서는 상용 디지털 카메라를 개조한 프로토 타입에서 취득한 영상을 사용하여 제안한 방식의 유효성을 검증하였다.
KIPS Transactions on Software and Data Engineering
/
v.8
no.9
/
pp.363-372
/
2019
A sequence refers to data in which the order exists on the two items, and purchase transaction data in which the products purchased by one customer are listed is one of the representative sequence data. In general, all goods have a product taxonomy, such as category/ sub-category/ sub-sub category, and if they are similar to each other, they are classified into the same category according to their characteristics. Therefore, in this paper, we not only consider the purchase order of products to compare two purchase transaction sequences, but also calculate their similarity by giving a higher score if they are in the same category in spite of their difference. Especially, in order to choose the best similarity measure that directly affects the calculation performance of the purchase transaction sequences, we have compared the performance of three representative similarity measures, the Levenshtein distance, dynamic time warping distance, and the Needleman-Wunsch similarity. We have extended the existing methods to take into account the product taxonomy. For conventional similarity measures, the comparison of goods in two sequences is calculated by simply assigning a value of 0 or 1 according to whether or not the product is matched. However, the proposed method is subdivided to have a value between 0 and 1 using the product taxonomy tree to give a different degree of relevance between the two products, even if they are different products. Through experiments, we have confirmed that the proposed method was measured the similarity more accurately than the previous method. Furthermore, we have confirmed that dynamic time warping distance was the most suitable measure because it considered the degree of association of the product in the sequence and showed good performance for two sequences with different lengths.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.