• 제목/요약/키워드: 유리세라믹화

검색결과 153건 처리시간 0.017초

사용 후 유리세라믹(Lithium-Aluminum-Silicate)을 활용한 중금속 제거 기초 연구 (A Basic Study for Removal of Heavy Metal Elements from Wastewater using Spent Lithium-Aluminum-Silicate(LAS) Glass Ceramics)

  • 고민석;왕제필
    • 자원리싸이클링
    • /
    • 제31권4호
    • /
    • pp.49-55
    • /
    • 2022
  • 본 연구에서는 인덕션 탑플레이트(induction top plate) 소재로 사용된 후 폐기되는 사용 후 Li2O-Al2O3-SiO2계 결정화 유리를 활용하여 중금속 용액 내 존재하는 중금속(Pb, Cd, Cr6+, Hg) 이온들의 제거 실험을 진행하였다. 중금속 흡착제로 사용된 흡착제의 양, 흡착 반응 시간, 초기 중금속 원소의 농도, 초기 용액의 pH 등의 반응 조건에 따른 중금속 제거 효율의 변화를 조사하였다. 사용 후 LAS 첨가량이 증가할수록 중금속 제거 효율이 상승하였다. 흡착 반응 시간은 흡착 특성에 큰 영향을 미치는 것으로 확인되었으며, 모든 중금속 원소들의 제거 효율이 상승하였다. 특히 반응 시간에 따라서 Cd의 경우 흡착제거 효율이 크게 개선되었다. 초기 중금속 용액 농도는 중금속 제거 효율에 영향을 미치지 않았다. 중금속 용액의 pH는 중금속 제거 효율에 영향을 미쳤는데, Cd의 경우 pH증가에 따라 중금속 제거 효율이 증가하였으며, Pb, Cr6+는 감소하였다. Hg는 pH가 흡착 특성에 큰 영향을 미치지 않았다.

기판온도 및 공정압력이 Aldoped ZnO 박막의 특성에 미치는 영향 (Effect of Substrate temperatures and Working pressures on the properties of the AI-doped ZnO thin films)

  • 강성준;정양희
    • 한국정보통신학회논문지
    • /
    • 제14권3호
    • /
    • pp.691-698
    • /
    • 2010
  • 본 연구에서는 RF magnetron sputtering 법으로 AZO 세라믹 타켓 ($Al_2O_3$ : 3 wt%)을 이용하여 Eagle 2000 유리 기판위에 기판온도 ($100{\sim}500^{\circ}C$)와 공정압력 (10 ~ 40 mTorr)에 따른 AZO 박막을 제작하여, 결정화 특성과 전기적 및 광학적 특성을 조사하였다. 모든 AZO 박막은 육방정계구조를 가지는 다결정 이었고, (002)우선 배향성이 관찰되었다. 기판온도 $300^{\circ}C$, 10 mTorr에서 제작한 AZO 막에서 가장 우수한 (002) 배향성을 나타냈으며, 이때의 반가폭 값은 $0.42^{\circ}$였다. 전기적 특성은 기판온도 $300^{\circ}C$, 10 mTorr에서 가장 낮은 비저항 $2.64{\times}10^{-3}\;{\Omega}cm$과 우수한 캐리어 농도 및 이동도를 $5.29{\times}10^{20}\;cm^{-3}$, $6.23\;cm^2/Vs$를 나타내었다. 모든 AZO 박막은 가시광 영역에서 80%의 투과율을 나타내었으며, 기판온도 증가와 공정압력 감소에 따른 Al 도핑효과의 증가로 밴드 갭이 넓어지는 Burstein-Moss 효과가 관찰 되었다.

패턴전사 프린팅을 활용한 리튬이온 배터리 양극 기초소재 Li2CO3의 나노스케일 패턴화 방법 (Nanoscale Pattern Formation of Li2CO3 for Lithium-Ion Battery Anode Material by Pattern Transfer Printing)

  • 강영림;박태완;박은수;이정훈;왕제필;박운익
    • 마이크로전자및패키징학회지
    • /
    • 제27권4호
    • /
    • pp.83-89
    • /
    • 2020
  • 지난 수십년간 인류에게 핵심적인 에너지 자원이었던 화석연료가 갈수록 고갈되고 있고, 산업발전에 따른 오염이 심해지고 있는 환경을 보호하기 위한 노력의 일환으로, 친환경 이차전지, 수소발생 에너지 장치, 에너지 저장 시스템 등과 관련한 새로운 에너지 기술들이 개발되고 있다. 그 중에서도 리튬이온 배터리 (Lithium ion battery, LIB)는 높은 에너지 밀도와 긴 수명으로 인해, 대용량 배터리로 응용하기에 적합하고 산업적 응용이 가능한 차세대 에너지 장치로 여겨진다. 하지만, 친환경 전기 자동차, 드론 등 증가하는 배터리 시장을 고려할 때, 수명이 다한 이유로 어느 순간부터 많은 양의 배터리 폐기물이 쏟아져 나올 것으로 예상된다. 이를 대비하기 위해, 폐전지에서 리튬 및 각종 유가금속을 회수하는 공정개발이 요구되는 동시에, 이를 재활용할 수 있는 방안이 사회적으로 요구된다. 본 연구에서는, 폐전지의 재활용 전략소재 중 하나인, 리튬이온 배터리의 대표적 양극 소재 Li2CO3의 나노스케일 패턴 제조 방법을 소개하고자 한다. 우선, Li2CO3 분말을 진공 내 가압하여 성형하고, 고온 소결을 통하여 매우 순수한 Li2CO3 박막 증착용 3인치 스퍼터 타겟을 성공적으로 제작하였다. 해당 타겟을 스퍼터 장비에 장착하여, 나노 패턴전사 프린팅 공정을 이용하여 250 nm 선 폭을 갖는, 매우 잘 정렬된 Li2CO3 라인 패턴을 SiO2/Si 기판 위에 성공적으로 형성할 수 있었다. 뿐만 아니라, 패턴전사 프린팅 공정을 기반으로, 금속, 유리, 유연 고분자 기판, 그리고 굴곡진 고글의 표면에까지 Li2CO3 라인 패턴을 성공적으로 형성하였다. 해당 결과물은 향후, 배터리 소자에 사용되는 다양한 기능성 소재의 박막화에 응용될 것으로 기대되고, 특히 다양한 기판 위에서의 리튬이온 배터리 소자의 성능 향상에 도움이 될 것으로 기대된다.