• Title/Summary/Keyword: 유리섬유시트

Search Result 39, Processing Time 0.025 seconds

Optimum Combination of Carbon and Glass Fiber Composite to Obtain the Hybrid Effect (하이브리드 효과를 주는 탄소섬유와 유리섬유의 최적 조합비)

  • Song, Hyung-Soo;Min, Chang-Shik
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.4
    • /
    • pp.405-411
    • /
    • 2011
  • Using combinations of carbon and glass fiber composites normally used for strengthening of concrete structures, the hybrid effect from strengthening concrete structures using the composite is studied. To produce the hybrid effects, the specimens were made with optimum proportions of carbon fibers with glass fibers. Then, direct tensile tests were conducted on the hybrid FRP (fiber reinforced polymer) specimens. Unlike the woven fiber sheet currently used in construction sites, the FRP specimens have to be directly combined with the fibers, which make the work very complicated. Therefore, direct tensile test specimens manufacturing method based on the combination of high-tension carbon fibers and E-type glass fibers was proposed and the effects of hybridization is studied through the direct tensile test. By comparing the ductility index, the modulus of elasticity, and the stress-strain curves of the specimens, the most optimum glass to carbon fiber combination ratio for the hybrid FRP was found to be 9 to 1 with ductile K-type epoxy. The study results are discussed in detail in the paper.

An Experimental Study of Class Fiber Sheet-reinforced Asphalt Pavement (유리섬유 시트 보강 아스팔트포장 내구성 증진에 관한 실험적 연구)

  • 조삼덕;이대영;김진환;김남호
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.1
    • /
    • pp.13-19
    • /
    • 2004
  • The major distress types in the domestic asphalt pavement are fatigue cracking, reflection cracking, thermal cracking, and rutting. To decrease the pavement distress by reinforcing asphalt pavement with reinforcement interlayer in geosynthetics to the traditional pavement systems can improve these problems. This study conducted laboratory test with asphalt pavement reinforced by glass fiber sheet to fix systematically geosynthetic asphalt pavement system. Laboratory tests like wheel tracking test and crack resistance test are conducted to analyze the controlling effect of glass fiber sheet on cracking and rutting of asphalt pavement.

Self-Diagnosis for Fracture Prediction of Concrete Reinforced by New Type Rib CFGFRP Rod and CF Sheet (신형 리브재 CFGFRP 보강근 및 CF 보강시트로 보강된 콘크리트의 파괴예측 자가진단)

  • Park, Seok-Kyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.2
    • /
    • pp.115-123
    • /
    • 2007
  • For investigating self-diagnosis applicability, a method based on monitoring the changes in the electrical resistance of carbon fiber reinforced concrete has been tested. Then after examining change in the value of electrical resistance at each flexural weight-stage of carbon fiber in CFGFRP (carbon fiber and glass fiber reinforcing plastic) with new type rib and carbon sheet for concrete reinforcing, the correlations of electrical resistance and load as a function of strain, deflection were analyzed. As the results, it is clarified that when carbon fiber rod, rib and sheet fracture, the electrical resistance of it increase largely, and specially in case of CFGFRP, afterwards glass fiber tows can be resist the load due to the presence of the hybrid (carbon and glass) reinforced fiber. Therefore, it can be recognized that reinforcing bar and new type rib of CFGFRP and sheet of CF could be applied for self-diagnosis of fracture in reinforced FRP concrete.

Structural Performance of Joints for Partial Reinforced Beam Using GFRP Laminated Plate and Cylindrical Reinforced LVL Column (GFRP적층판을 활용한 보강보부재와 원통형 단판적층기둥재 접합부의 내력 성능평가)

  • Song, Yo-Jin;Jung, Hong-Ju;Lee, Jung-Jae;Suh, Jin-Suk;Park, Sang-Bum;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.3
    • /
    • pp.282-289
    • /
    • 2014
  • After being laminated with a combination of glass fiber reinforced plastic and plywood, the GFRP laminated plate was densificated for 1 hour at $150^{\circ}C$ with pressure of $1.96N/mm^2$. A partial reinforced beam was produced by attaching the 5 GFRP laminated plates to the joint of glulam and the column. In addition, the column to beam joint was produced by using reinforced laminated wooden pin which was made of GFRP sheet and plywood, fiber glass reinforced cylindrical-LVL column. The joint was made of round log, glulam and drift pin as the reference specimen, and its moment resistance was evaluated. As a result, the strength performance of specimens with partial reinforced beams were 1.8 times stronger than the reference specimen on average. Furthermore, rupture was neither occurred on partial reinforced beam nor column. Toughness and stiffness of joints were also fine. The GFRP sheet reinforced laminated plate showed better reinforcement effect than GFRP textile reinforced one. GFRP sheet was inserted into each layer of laminate, and it showed good condition in rotation-angle and strength, therefore it is the most appropriate to reinforce the part of the beam.

Performance Evaluation of Asphalt Pavement Reinforced with Glass Fiber Sheet Type of Geosynthetics (유리섬유시트 형태의 토목섬유로 보강된 아스팔트 포장의 공용성 평가)

  • Cho, Sam-Deok;Lee, Dae-Young
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.3
    • /
    • pp.1-8
    • /
    • 2011
  • This paper presents the performance evaluation of asphalt pavement reinforced with fiber sheet type of geosynthetics and observations conducted to evaluate the practical efficiencies and performance of overlay asphalt pavement reinforced with geosynthetics. In this study, performance evaluation were performed for the six section of construction site. The performance indcators of asphalt pavement reinforced with geosynthetics has been collected Automatic Road Analyzer (ARAN), Falling Weight Deflectometer (FWD) and have been analyzed for rutting, cracking ratio, falling weight and international roughness index. As a result of performance evaluations, geosynthetics reinforced asphalt pavement is sigficant effect on increasing a cracking resistance than the non-reinfroced asphalt pavement, also rutting and crak is slowly increase as incerasingly performance period.

An Study on the Non-Exposure Waterproofing Method Laminated Twist Glass Fiber Mesh on Self Adhesion Butyl Rubber Sheet (자착식 부틸고무시트에 다발형 유리섬유직포를 적층한 비노출방수공법에 관한 연구)

  • Bang, Myung-Jin;Park, Jin-Sang;Kang, Hyo-Jin;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.04a
    • /
    • pp.133-136
    • /
    • 2007
  • It has been applied the self adhesion waterproofing sheet which is developed from exist asphalt waterproofing sheet by heat and torch in domestic construction field. However, the problem of waterproofing have constantly happened due to air pocket condition and defect of joint part in waterproofing construction. Therefore, in this study, we would like to analyze the field application as testing in side of materials and construction method of self adhesion butyl rubber sheet and study of the materials performance.

  • PDF

NO Reduction Mechanism of Electrolytically Cu-plated Activated Carbon Fibers (전해 구리도금된 활성탄소섬유의 NO 환원반응 메카니즘)

  • 신준식;박수진;김학용;이덕래
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.04a
    • /
    • pp.309-310
    • /
    • 2003
  • 활성탄소 (activated carbons, ACs)는 넓은 비표면적을 가지고 있어 흡착용량이 크며, 발달된 미세공을 가지고 있기 때문에 오염물질의 제거능력이 높을 뿐만 아니라 경제적, 환경 친화적인 측면에서도 유리하다. 특히 섬유화된 할성탄소섬유 (activated carbon fibers, ACFs)는 균일한 세공이 표면에 노출되어 있어 흡착속도가 빠르며, 안정성과 재생성이 좋고 섬유상이기 때문에 가공이 용이하며 직포, 부직포, 시트 등의 형태로 만들어져 용매회수, 공업제품의 정제, 오폐수의 처리시설, 소각시설의 유해 배기가스의 흡착등에 널리 사용되고 있다.[1,2] (중략)

  • PDF

Synergistic Effect in Mechanical Properties of Sheet Molding Compound via Simultaneous Incorporation of Glass Fiber and Glass Bubble Fillers (유리섬유와 유리버블에 의한 Sheet Molding Compound 강도의 시너지 효과)

  • Noh, Ye Ji;Lee, Yong Cheol;Hwang, Taewon
    • Composites Research
    • /
    • v.31 no.1
    • /
    • pp.8-11
    • /
    • 2018
  • Sheet molding compound (SMC) is one of the most economical fiber reinforced composite fabrication processing for automotive applications. In this study, we studied the optimum formulation for the production of SMC which shows low specific gravity without lowering the mechanical properties by using glass bubble (GB) which is a low specific gravity filler and glass fiber (GF) as a reinforcing material. The tensile strength increased with the increase of the GF in the SMC, and the specific gravity decreased with the increase of the GB. The synergistic effect of improving the mechanical properties as the specific gravity is lowered is found in the optimum formulation. The synergy effect was confirmed by the internal structure analysis that the dispersion effect of the crack propagation of the GB and the improvement of the binding force between the fiber and the matrix due to the incorporation of the GB.

Performance Evaluation of RC Slabs Strengthened by Stiff Type PolyUrea (경질형 폴리우레아로 보강된 RC 슬래브의 성능 평가)

  • Park, Jeong Cheon;Lee, Sang Won;Kim, Sung Bae;Kim, Jang-Ho Jay
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.6A
    • /
    • pp.457-464
    • /
    • 2011
  • An experimental study was performed to evaluate the possibility of using stiff type PolyUrea(PU) on RC slab as a strengthening material. Stiff type PU(STPU) was sprayed on the bottom surface of the slab specimens, which were then attached with CFRP or GFRP sheets. Also the evaluation of the bond capacity, the single most influential parameter on strengthening of RC structures, was carried out the flexural capacity evaluation test results showed that the load carrying capacity of the PU specimen was greater and less than the unstrengthened and FRP sheet attached specimens, respectively. The STPU specimens showed a ductile flexural behavior in the plastic displacement range. With respect to bond capacity, the bond strength of all of the specimen exceeded the code required bond strength of 1.5 MPa. Also, the STPU sprayed specimen without using epoxy resin did not peel off when the tensile grip was applied for testing. The stability of the PU bond failure indicate a good bond strength of PU when applied to concrete.

Seismic Strengthening and Performance Evaluation of Damaged R/C Buildings Strengthened with Glass Fiber Sheet and Carbon Fiber X-Brace System (GFS-CFXB 내진보강법을 이용한 지진피해를 받은 R/C 건물의 내진성능 평가 및 내진보강 효과)

  • Lee, Kang-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.6
    • /
    • pp.667-674
    • /
    • 2013
  • Improving the earthquake resistance of buildings through seismic retrofitting using steel braces can result in brittle failure at the connection between the brace and the building, as well as buckling failure of the braces. This paper proposes a new seismic retrofit methodology combined with glass fiber sheet (GFS) and non-compression X-brace system using carbon fiber (CFXB) for reinforced concrete buildings damaged in earthquakes. The GFS is used to improve the ductility of columns damaged in earthquake. The CFXB consists of carbon fiber bracing and anchors, to replace the conventional steel bracing and bolt connection. This paper reports the seismic resistance of a reinforced concrete frame strengthened using the GFS-CFXB system. Cyclic loading tests were carried out, and the hysteresis of the lateral load-drift relations as well as ductility capacities were investigated. Carbon fiber is less rigid than the conventional materials used for seismic retrofitting, resulting in some significant advantages: the strength of the structure increased markedly with the use of CF X-bracing, and no buckling failure of the bracing was observed.