• Title/Summary/Keyword: 유리섬유/폴리프로필렌 복합재료

Search Result 22, Processing Time 0.027 seconds

A Study on the Filament Winding Process Using Thermoplastic Commingled Yarn (Commingled Yarn 을 이용한 열가소성 복합재료의 Filament Winding 공정에 관한 연구)

  • 김선경;김공민;이우일
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.199-210
    • /
    • 2000
  • 복합재료의 성형 공정 중 하나인 Filament Winding 공정에 열가소성 기지재료인 폴리프로필렌(Polypropylene)과 강화섬유인 유리섬유로 이루어진 Commingled Yarn 을 이용한 연구를 수행하였다. 함침 과정을 해석하기 위한 계산모델을 제시하였다. 그리고 위의 모델링을 해석하는 데 필요한 복합재료 내의 온도 분포를 수치해석을 통해 계산하였고 실험을 통해 이를 검증하였다. 온도계산 결과를 함침도 예측에 이용하였다. 모델링을 통해 Filament Winding 공정의 주요 공정 변수를 찾아내었고 제시한 모델을 검증하기 위해 직접 Filament Winding 실험 장치를 제작하여 제품을 생산하고 모델과 비교하였다. 제작된 시편으로부터 함침도를 계산하는 방법을 제시하였다. 그 결과 함침도에 관해서 실험 결과가 모델과 그 경향이 뚜렷이 일치함을 확인하였다.

  • PDF

Effect of Textile Pattern on Mechanical and Impregnation Properties of Glass Fiber/Thermoplastic Composite (유리 섬유/열가소성 복합 재료의 기계적 및 함침 특성에 대한 직물 패턴의 영향)

  • Kim, Neul-Sae-Rom;Lee, Eun-Soo;Jang, Yeong-Jin;Kwon, Dong-Jun;Yang, Seong Baek;Yeom, Jung-Hyun
    • Composites Research
    • /
    • v.31 no.6
    • /
    • pp.317-322
    • /
    • 2018
  • In various industry, the composite is tried to be applied to products and thermoplastic based composite is in the spotlight because this composite can be recycled. The use of continuous fiber thermoplastic (CFT) method increased gradually than long fiber thermoplastic (LFT). In this study, tensile, flexural, and impact test of different array types of glass fiber (GF)/thermoplastic composites were performed to compare with GF array. Impregnation property between GF mat and thermoplastic was determined using computed tomography (CT). At CFT method, thermoplastic film is not wet into GF roving and many voids are appeared into composite. This phenomenon affects to decrease mechanical properties. Plain pattern GF mat was the best mechanical and impregnation properties that distance between two roving was set closely to $100{\mu}m$.

Improvements of Impact strength in Glass Fiber/Polypropylene Composite by Silane Coupling Agents (실란커플링제에 의한 유리섬유/폴리프로필렌 복합재료의 충격강도 증가에 관한 연구)

  • 정광보
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.1
    • /
    • pp.43-47
    • /
    • 2001
  • Effect of coupling agent on the mechanical properties of PP/GF blend was investigated. The flexural modulus, Izod impact strength, elongation at yield and tensile strength were improved with using coupling agent. Mopological studies revealed that PP and GF were incompatible and addition of coupling agent was very effective to enhance the compatibility, result in mechanical properties.

  • PDF

Environment Deterioration Characteristics of Polypropylene / Glass Fiber Composites under Moisture Absorption Environment (흡습 환경 하의 폴리프로필렌/유리 섬유 강화 복합재료의 환경 열화 특성)

  • Kim, Yun-Hae;Park, Chang-Wook;Jung, Gyung-Seok;Shin, Seok-Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.6
    • /
    • pp.520-525
    • /
    • 2016
  • In this study, a mixture of polypropylene fibers and glass fibers were used to weave polypropylene/glass fiber-reinforced composite panels with characteristics such as highly elongated short fibers, high ductility, anti-fouling, and hydrophobicity as a result of a directional property. Mechanical and environmental tests were carried out with specimens fabricated with this composite panel, and its applicability to shipbuilding and ocean leisure industries was evaluated through a comparison with existing glass fiber-reinforced composite materials. The results of this experiment verified the excellence of the polypropylene/glass-mixed woven fiber-reinforced composite material compared to the existing glass fiber-reinforced composite material. However, the forming process needs to be changed to improve the weak interfacial bonding, and the properties of the composite material itself could be improved through mixed weaving with other fibers after development. Maximizing of the advantages of the polypropylene fibers and overcoming their shortcomings will improve their applicability to the shipbuilding, ocean leisure, and other industries, and increase the value of polypropylene fibers in the composite material market.

An Investigation of the Formability of Thermoplastic Composite in Biaxial Stretch Forming (열가소성 복합재료의 2축 인장성형시 성형성에 관한 연구)

  • 이중희
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.10
    • /
    • pp.127-134
    • /
    • 1997
  • 열가소성 복합재료는 고상 성형법에 의해 저렴한 가격으로 부피가 튼 제품의 제조에 널리 사용될 수 있어 아주 좋은 전망을 가지고 있다. 그러나, 이러한 재료의 성형성에 대해선 아직 잘 알려지지 않았다. 본 연구의 첫번때 주안점은 2축 인장성형시 성형성에 대한 연구에 두었다. 실험에 사용된 재료는 임의의 방향으로 위치한 유리 섬유를 중량비로 20, 35, 40% 함유한 폴리프로필렌이다. 성형시험은 75 .deg. C 에서 150 .deg. C 사이의 온도에서 행했으며, 펀치 속도는 0.01cm/sec 와 1cm/sec 에서 행했다. 2축 인장성형에서 측정된 한계 변형률(Limiting Strain)은 Marciniak 불완전성 (Imperfection) 이론에 근거한 예견치외 비교되었다. 이론치와 실험치가 잘 일치함을 보였으며, 성형한계선도(Forming Limit Diagram) 로써 결과들을 요약하였다. 성형한계 변형률은 성형온도와 성형속도에 의해 크게 영향을 받는다는 것을 보인다. 이러한 결과들은 적절한 성형조건이 선택된다면 열가소성 복합재료의 인장성형은 실제 상업적으로 이용하기에 충분한 성형성을 갖는다는 것을 보인다.

  • PDF

Interfacial Morphology of Glass Fiber/Polypropylene Composite (유리섬유/폴리프로필렌 복합계의 계면 모폴로지)

  • Park, S.H.;Lee, K.H.;Kim, J.K.;Lim, S.H.;Park, M.;Lee, S.S.;Kwon, S.J.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.249-251
    • /
    • 2002
  • It is well known that the interaction and adhesion between the glass fiber(GF) and polymer matrix has a significant effect in determining the properties of fiber-reinforced materials. Therefore, it is one of most important to modify the surface of GF with an appropriate sizing. We investigated the treatment method of GF with coupling agent to improve the interaction of the interfacial regions, and then the correlation between interfacial property and interphase microstructure was examined in an attempt to realize a proper morphology around the GF surface.

  • PDF

Temperature Effects on Impact Fracture Mechanisms of Glass Fiber/Polypropylene Campsites (유리섬유/폴리프로필렌 복합재료의 충격파괴기구에 대한 온도효과)

  • KOH S. W.;Um Y. S.
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.314-319
    • /
    • 2004
  • Many of researches regarding mechanical properties of composite materials are associated with humid environment and temperature. Especially the temperature is a very important factor influencing the design of thermoplastic composites. However, the effect of temperature on impact behavior of reinforced composites have not yet been fully explored. An approach which predicts critical fracture toughness GIC was performed by the impact test in this work The main goal of this work is to study effects of temperature in the impact test with glass fiber/polypropylene(GF/pp) composites. The critical fracture energy and failure mechanisms of GF/PP composites are investigated in the temperature range of $60^{\circ}C\;to\;-50^{\circ}C$ by impact test. The critical fracture energy shows a maximum at ambient temperature and it tends to decrease as temperature goes up or goes down. Major failure mechanisms can be classified such as fiber matrix debonding, fiber pull-out and/or delamination and matrix deformation.

  • PDF

A Study on the Three Phase Glass Fiber/Nylon 6/Polyproylene Composites (나일론 6과 폴리프로필렌 수지에 유리섬유가 보강된삼상 복합재료에 관한 연구)

  • 서문호
    • The Korean Journal of Rheology
    • /
    • v.10 no.2
    • /
    • pp.57-64
    • /
    • 1998
  • A pultrusion resin impregnation (PRI) die, which has been developed recently in our laboratory, was used to pre-pare various composite system. The continuous fiber reinforced composites of glass fiber/polypropylene(GFPP) and glass fiber/polyamide 6 (GFPA) were first manufactured by means of the PRI die and then cut into chopped pellets of predet-ermined length. These pellets and either virgin or modified thermoplastic resin were melt-mixed by a twin screw extruder to prepare GF/PA/PP and GF/PA/PPMA system. The mechanical properties of these blends were investigated and discussed in terms of their morphological observations. These preliminary results revealed that this new impregnation die could be suc-cessfully applied to produce prepregs suitavle for the final shaping process.

  • PDF

Half-dome Thermo-forming Tests of Thermoplastic Glass Fiber/PP Composites and FEM Simulations Based on Non-orthogonal Constitutive Models (열가소성 유리섬유/PP 복합재의 반구돔 열성형 평가 및 비직교 구성방정식을 이용한 FEM 수치해석)

  • Lee, Wonoh
    • Composites Research
    • /
    • v.29 no.5
    • /
    • pp.236-242
    • /
    • 2016
  • In this work, tensile and in-plane shear tests for thermoplastic glass fiber/polypropylene composites were performed at a thermo-forming temperature and their properties were characterized and mathematically expressed by using the non-orthogonal constitutive model. As for the thermo-forming test, half-dome experiments were carried out by varying the usage of a releasing agent and the weight of holders. As results, the optimum final shape having well-aligned symmetry and no wrinkle formation was obtained when the releasing agent was used, and it was found that the careful control of a holding force is crucial to manufacture the healthy product. Furthermore, FEM simulations based on the non-orthogonal model showed similar final shapes and tendency of wrinkle formation with experimental results, and confirmed that wrinkles increase with less holding force and higher punch force is required under high frictional condition.