• Title/Summary/Keyword: 유리강화섬유

Search Result 318, Processing Time 0.024 seconds

Laminate Weight Optimization of Composite Ship Structures based on Experimental Data (FRP 기계적 물성을 고려한 복합소재 선체구조 적층판 경량화 설계)

  • Oh, Daekyun;Han, Zhiqiang;Noh, Jackyou;Jeong, Sookhyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.2
    • /
    • pp.104-113
    • /
    • 2020
  • The study aims to improve the previous theory-based algorithm on the lightweight design of laminate structures of a composite ship based on the mechanical properties of fiber, resin, and laminates obtained from experiments. From a case study on using a hydrometer to measure the specific gravity of e-glass fiber woven roving fabric/polyester resin used as the raw material for the hull of a 52 ft composite ship, the equation for calculating the weight of laminate was redefined, and the relationship between decreasing mechanical properties and increasing glass content was determined from the results of material testing according to ASTM D5083 and ASTM D790. After applying these experimental data to the existing algorithm and improving it, a possible laminate design that maximizes the specific strength of the composite material was confirmed. In a case study that applied the existing algorithm based on rules, the optimal lightweight design of composite structures was achieved when the weight fraction of e-glass fiber was increased by 57.5% compared with that in the original design, but the improved algorithm allowed for an increase of only 17.5%.

A Study on the Part Shrinkage in Injection Molded Annular Shaped Product for Glass Reinforced Polycarbonate (유리섬유 강화 폴리카보네이트의 환상형상부품 사출성형시 성형수축에 관한 연구)

  • Lee, Mina;Lyu, Min-Young
    • Elastomers and Composites
    • /
    • v.48 no.4
    • /
    • pp.300-305
    • /
    • 2013
  • Part shrinkage in injection molding is inevitable phenomenon. Thus, it is necessary not only study on the reducing part shrinkage but characterization of part shrinkage. In this study, part shrinkage in injection molded 2.5 dimensional annular shaped specimens has been studied using glass fiber reinforced PC. Annular shaped specimens were designed with various sizes of outer diameter and thickness. Injection temperature, packing time and packing pressure were selected for operational conditions. Profile variations of outer and inner diameters of molded specimens for various operational conditions were investigated. Sizes of outer and inner diameters of injection molded specimens were smaller than the sizes of mold. Part shrinkage decreased as outer diameter and thickness increased. Part shrinkage showed anisotropic behavior and it depended upon gate location. Subsequently, molded specimens were not circular but oval in shape, and showed the largest shrinkage in the direction of gate. It was realized that the mold design such as gate design is important to control the shape of molded products.

Energy Absorption Characteristics of the Al/CFRP/GFRP Hybrid Member under Quasi-static Axial Compressive Load (준정적 축 압축하중을 받는 Al/CFRP/GFRP 혼성부재의 에너지흡수 특성)

  • Kim, Sun-Kyu;Heo, Uk;Im, Kwang-Hee;Jung, Jong-An
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.4
    • /
    • pp.588-592
    • /
    • 2012
  • This study concentrates the effect of hybridisation on the collapse mode and energy absorption for composite cylinders. The static collapse behavior of laminated(Al/CFRP/GFRP) circular-cylindrical composite shell under quasi-static axial compressive load has been investigated experimentally. Eight different hybrids of laminated(Al/CFRP/GFRP) circular-cylindrical composite shell were fabricated by autoclave. Eight types of composites were tested, namely, Al/carbon fiber/epoxy, Al/glass fiber/epoxy, Al/carbon-carbon-glass/epoxy, Al/carbon-glass-carbon/epoxy, Al/carbon-glass-glass/epoxy, Al/glass-glass-carbon/epoxy, Al/glass-carbon-glass/epoxy and Al/glass-carbon-carbon/epoxy. Collpase modes were highly dominated by the effect of hybridisation. The results also showed that the hybrid member with material sequence of Al-glass-carbon-carbon/epoxy exhibited good energy absorption capability.

Strength Characteristics and Non-Destructive Evaluation of Composites with Heat Damage (국부열손상을 받은 복합재료의 강도특성 및 비파괴평가)

  • Nam, Ki-Woo;Kim, Young-Un
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.173-178
    • /
    • 2002
  • Fourier transform has been one of the most common tools to study the frequency characteristics of signals. With the Fourier transform alone, it is difficult to tell whether signal's frequency contents evolve in time or not. Except for a few special cases, the frequency contents of most signals encountered in the real world change with time. Time-frequency methods are developed recently to overcome the drawbacks of Fourier transform, which can represent the information of signals in time and frequency at the same time. In this study, heat damage process of a carbon fiber reinforced plastic(CFRP) and glass fiber reinforced plastic(GFRP) under monotonic tensile loading was characterized by acoustic emission. Different kinds of specimens were used to determine the characteristics of Strength and AE signals. Time-frequency analysis methods were employed for the analysis of fracture mechanism in CFRP such as matrix cracking, debonding and fiber fracture.

  • PDF

An Experimental Study on the Free Vibration of Composite Plates with Various Shapes (다양한 형상을 갖는 복합재료 판의 자유진동에 대한 실험적 연구)

  • 이영신;최명환
    • Composites Research
    • /
    • v.12 no.1
    • /
    • pp.47-58
    • /
    • 1999
  • This paper describes the results of experiments to analyze the free vibration of the laminated composite and hybrid composite plates with various shapes and boundary conditions. The materials of specimens were the carbon fiber reinforced plastic (CFRP), the glass fiber reinforced plastic (GFRP), the GFRP-Aluminum hybrid composite and the CFRP-CFRP hybrid composite. The natural frequencies and nodal patterns of plates with various shapes were experimentally obtained by impact exciting test using an impact hammer and an accelerometer. The experimental results were presented with normalized frequency parameters. The effects of composite material properties, fiber orientation angles, various geometrical shapes and boundary conditions on the vibration characteristics of composite plates were evaluated. To compare and verify these experimental results, the finite element analysis was carried out, and was well agreed with experimental results.

  • PDF

A Study on the Structural Design of Effective Composite Joint and Light Weight in Body Floor (Body Floor의 복합재 접합방식 및 경량화 설계에 관한 연구)

  • Kim, Hong Gun;Oh, Sang Yeob;Kim, Kwang Choul;Kim, Hyun Woo;Kwac, Lee Ku
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.6
    • /
    • pp.920-925
    • /
    • 2012
  • A study of vehicle weight lightening has been progressed to reduce the fuel consumption. In this paper, the body floor in an EV (Electric Vehicle) bus has been applied by composites as CFRP and GFRP. In order to analyse a various reliability and safety, an experiment and FEM analysis was carried out to obtain weight lightening. Especially, the joint. An effective design is obtained through an experiment as well as FEM analysis. Results of stress analysis of GFRP material showed twice as much displacement than those of CFRP material. Among three kinds of joint methods, the bond joint method is occurred to a substantial shape change in the body and floor. It is found that the rivet joints are fairly suitable for stress sustaining capability.

Thermal and Mechanical Properties of Short Fiber-Reinforced Epoxy Composites (단섬유 강화 에폭시 복합재료의 열적/기계적 특성)

  • Huang, Guang-Chun;Lee, Chung-Hee;Lee, Jong-Keun
    • Polymer(Korea)
    • /
    • v.33 no.6
    • /
    • pp.530-536
    • /
    • 2009
  • A cycloaliphatic epoxy/acidic anhydride system incorporating short carbon fibers (SCF) and short glass fibers (SGF) was fabricated and thermal/mechanical properties were characterized. At low filler content both SCF- and SGF-reinforced composites showed a similar decrease in coefficient of thermal expansion (CTE), measured by a thermomechanical analyzer, with increasing loadings, above which SCF became more effective than SGF at reducing the CTE. Experimental CTE data for the SCF-reinforced composites is best described by the rule of mixtures at lower SCF contents and by the Craft-Christensen model at higher SCF contents. Storage modulus (E') at $30^{\circ}C$ and $180^{\circ}C$ was greatly enhanced for short fiber-filled composites compared to unfilled specimens, Scanning electron microscopy of the fracture surfaces indicated that the decreased CTE and the increased E' of the short fiber-reinforced composites resulted from good interfacial adhesion between the fibers and epoxy matrix.

A Study on the Improvement of Bending Characteristics of 3D Printed Thermoplastic Structures Reinforced at the Lateral Surface using Continuous Fiber Reinforced Thermosetting Composites (열경화성 연속섬유 복합재를 이용해 외측 보강된 3D 프린팅 열가소성 복합재 구조물의 굽힘 특성 향상에 대한 연구)

  • Baek, Un-Gyeong;Nam, Gibeop;Roh, Jae-Seung;Park, Sung-Eun;Roh, Jeong-U
    • Composites Research
    • /
    • v.34 no.2
    • /
    • pp.136-142
    • /
    • 2021
  • 3D printing technology has the advantage of easy to make various shapes of products without a mold. However, it has a problem such as mechanical properties vary greatly depending on materials and manufacturing conditions. Thus, the need for research of 3D printing technology on ways to reduce manufacturing cost compared to physical properties is increasing. In this study, a 3D printing thermoplastic structure was fabricated using short fiber carbon fiber reinforced nylon filaments. And a method of improving mechanical properties was proposed by reinforcing the outer surface using pultruded continuous fiber-type carbon fiber or glass fiber-reinforced thermosetting composite material. It was confirmed that the bending properties were improved according to the reinforcing position of the stiffener and the type of fiber in the stiffener.

A Study on the Durability of Glass Fiber Reinforced Plastics Rebars (GFRP 리바의 내구성에 관한 연구)

  • Moon, C.K.;Kim, Y.H.;Park, Y.H.
    • Journal of Power System Engineering
    • /
    • v.9 no.2
    • /
    • pp.50-56
    • /
    • 2005
  • The mechanical properties of glass fiber reinforced polymer reinforcing bars(rebar) in various environment conditions such as moisture, chloride, alkali and freeze-thaw actions at temperature ranging from room temperature($25^{\circ}C$) to high temperature of up to $80^{\circ}C$ have been studied. The test results indicated that tensile strength and interfacial shear strength of GFRP bar were decreased with the increasing of temperature and holding time of each environment condition. The degradation in alkali environment. was more serious than those in the other environments.

  • PDF

Developement of New Glass Fiber Reinforced Composite Insulating Material by Reactive Plasma Surface Treatment(II) (반응성 플라즈마 표면처리기법을 도입한 새로운 유리섬유 강화 복합재료의 개발 및 물성연구(II))

  • 박정후;조정수;성문열;김두환;김규섭
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.05a
    • /
    • pp.216-219
    • /
    • 1995
  • One of the principal problems encountered in the use of glass fiber reinforced Plastic composites(GFRP) is to establish an active fiber surface to achieve maximum adhesion between resin and fiber surface. In order to develope new process to overcome the disadvantage of chemical agent, we have studied the effect of reactive plasma glass surface treatment on the electrical and mechanical properties of glass fiber reinforced epoxy composites. It is found that the electrical and mechanical characteristics of the composites treated with plasma is improved especially in the dielectric strength by 20% and tensile strength by 15%, whereas the tan $\delta$ is decreased significantly.

  • PDF