• Title/Summary/Keyword: 유류계 탄화수소

Search Result 28, Processing Time 0.034 seconds

A Case Study of Monitored Natural Attenuation at the Petroleum Hydrocarbon Contaminated Site : II. Evaluation of Natural Attenuation by Groundwater Monitoring (유류오염부지에서 자연저감기법 적용 사례연구 II. 지하수모니터링에 의한 자연저감 평가)

  • Yun Jeong Ki;Lee Min Hyo;Lee Suk Young;Noh Hoe Jung;Kim Moon Soo;Lee Kang Kun;Yang Chang Sool
    • Journal of Soil and Groundwater Environment
    • /
    • v.9 no.3
    • /
    • pp.38-48
    • /
    • 2004
  • Natural attenuation of petroleum hydrocarbon was investigated at an industrial complex about 45 Km away from Seoul. The three-years monitoring results indicated that the concentrations of DO, nitrate, and sulfate in the contaminated area were significantly lower than the background monitoring groundwater under the non-contaminated area. The results also showed a higher ferrous iron concentration, a lower redox potential, and a higher (neutral) pH in the contaminated groundwater, suggesting that biodegradation of TEX(Toluene, Ethylbenzene, Xylene) is the major on-going process in the contaminated area. Groundwater in the contaminated area is anaerobic, and sulfate reduction is the dominant terminal electron accepting process in the area. The total attenuation rate was about 0.0017∼0.0224day$^{-1}$ and the estimated first-order degradation rate constant(λ) was 0.0008∼0.0106day$^{-1}$ . However, the reduction of TEX concentration in the groundwater was resulted from not only biodegradation but also dilution and reaeration through recharge of uncotaminated surface and groundwater. The natural attenuation was, therefore, found to be an effective, on-going remedial process at the site.

Fenton-like Reaction for Treatment of Petroleum-Contaminated Silty Clay after Soil Washing Process (토양세척 후의 유류 오염 Silty Clay 처리를 위한 유사펜톤 산화반응)

  • So, Myung-Ho;Ha, Ji-Yeon;Yu, Jae-Bong;Kim, Chang-Gyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • This research was performed to assess a Fenton-like oxidation using naturally present iron in the field to treat remained oils throughout silty clay residues which finally resided even after a series of soil washing process. Biodegradability was thus tested for reaction products to investigate a possible treatment of the Fenton-like oxidation coupled with a biological treatment process. For those purposes, two types of field soil samples (e.g., dewatered cake after conditioning with a polymer and not-dewatered residue) were tested to remove TPH by adding the various concentration of hydrogen peroxide ($H_2O_2$). Moreover the biodegradability of treated samples was observed based on the ratio of $BOD_5/COD_{Cr}$ after Fenton-like oxidation. The Highest removal of TPH was at 1% of hydrogen peroxide ($H_2O_2$) when hydrogen peroxide ($H_2O_2$) was continuously injected for a period of time rather than that of spot introduction with the same amount of it. For the dewatered cake, TPH was effectively treated when the ratio of solid and water was mixed at 1 : 2. Employing cooking oil could increase solubility of TPH due to enhanced surface-active escalating TPH desorption from silty clay. Nonetheless, the biodegradability was decreased as long as the oxidation duration being extended regardless of operational conditions. It was therefore proved that Fenton-like oxidation using $H_2O_2$ and natural iron minerals was able to remove adsorbed oils in silty clay but the removal efficiency of TPH was low. And if a biological treatment process followed after Fenton-like oxidation, microorganisms would need enough time for acclimation.

Efficient Remediation of Petroleum Hydrocarbon-Contaminated Soils through Sequential Fenton Oxidation and Biological Treatment Processes (펜톤산화 및 생물학적 연속처리를 통한 유류오염토양의 효율적 처리)

  • Bae, Jae-Sang;Kim, Jong-Hyang;Choi, Jung-Hye;Ekpeghere, Kalu I.;Kim, Soo-Gon;Koh, Sung-Cheol
    • Korean Journal of Microbiology
    • /
    • v.47 no.4
    • /
    • pp.356-363
    • /
    • 2011
  • The accidental releases of total petroleum hydrocarbons (TPH) due to oil spills frequently ended up with soil and ground water pollution. TPH may be degraded through physicochemical and biological processes in the environment but with relatively slow rates. In this study an attempt has been made to develop an integrated chemical and biological treatment technology in order to establish an efficient and environment-friendly restoration technology for the TPH contaminated soils. A Fenton-like reaction was employed as a preceding chemical treatment process and a bioaugmentation process utilizing a diesel fuel degrader consortium was subsequently applied as a biological treatment process. An efficient chemical removal of TPH from soils occurred when the surfactant OP-10S (0.05%) and oxidants ($FeSO_4$ 4%, and $H_2O_2$ 5%) were used. Bioaugmentation of the degrader consortium into the soil slurry led to an increase in their population density at least two orders of magnitude, indicating a good survival of the degradative populations in the contaminated soils ($10^8-10^9$ CFU/g slurry). TPH removal efficiencies for the Fenton-treated soils increased by at least 57% when the soils were subjected to bioaugmentation of the degradative consortium. However, relatively lower TPH treatment efficiencies (79-83%) have been observed in the soils treated with Fenton and the degraders as opposed to the control (95%) that was left with no treatment. This appeared to be due to the presence of free radicals and other oxidative products generated during the Fenton treatment which might inhibit their degradation activity. The findings in this study will contribute to development of efficient bioremediation treatment technologies for TPH-contaminated soils and sediments in the environment.

The Effect of Compost Application on Degradation of Total Petroleum Hydrocarbon in Petroleum-Contaminated Soil (유류오염 토양 내 석유계 탄화수소 화합물의 분해에 대한 퇴비의 시용 효과)

  • Kim, Sung Un;Kim, Yong Gyun;Lee, Sang Mong;Park, Hyean Cheal;Kim, Keun Ki;Son, Hong Joo;Noh, Yong Dong;Hong, Chang Oh
    • Korean Journal of Environmental Agriculture
    • /
    • v.34 no.4
    • /
    • pp.268-273
    • /
    • 2015
  • BACKGROUND: Petroleum-contaminated soil from leaking above- and underground storage tanks and spillage during transport of petroleum products is widespread environmental problem in recent years. Application of compost may be the most promising, cost-effective, and eco-friendly technology for soil bioremediation because of its advantages over physical and chemical technology. The objective of this study was to evaluate effect of compost application on degradation of total petroleum hydrocarbon (TPH) in petroleum hydrocarbon-contaminated soil.METHOD AND RESULTS: An arable soil was artificially contaminated by diesel, and compost was applied at the different rate of 0, 10, 30, and 50 Mg/ha. Concentration of TPH in the soil decreased as application rate of compost increased. Degradation efficiency was highest at compost 30 Mg/ha; however, it slightly decreased with compost 50 Mg/ha. Kinetic modeling was performed to estimate the rates of chemical reaction. The correlation coefficient (R2) values for the linear plots using the second-order model were higher than those using the first-oder model. Compost 30 and 50 Mg/ha had the fastest TPH degradation rate in the second-order model. Change of microbial population in soil with compost application was similar to that of TPH. Microbial population in the soil increased as application rate of compost increased. Increasing microbial population in the contaminated soil corresponded to decreased in TPH concentration.CONCLUSION: Conclusively, compost application for soil bioremediation could be an effective response to petroleum hydrocarbon-contaminated soil. The increase in microbial population with compost suggested that compost application at an optimum rate might enhance degradation of TPH in soil.

Distribution Characteristics of Polycyclic Aromatic Hydrocarbons in the Sediments of Kwangyang Bay in Korea (광양만 연안 퇴적토 중의 다환방향족탄화수소류의 분포특성)

  • Chung, Hung-Ho;Jeong, Ho-Seung;Choi, Sang-Won
    • Applied Chemistry for Engineering
    • /
    • v.17 no.2
    • /
    • pp.210-216
    • /
    • 2006
  • The concentrations of 16 priority PAHs (US EPA standard) were analyzed in the surface sediments obtained from 23 sampling sites near Kwangyang Bay in Korea. There was a local variability in the total PAHs ranged from 0.01 to 171.39 mg/kg, with a mean value of $8.13{\pm}24.8mg/kg$. The major pollution sources of PAHs near Kwanyang Bay were Taeindo, Sueo stream and Wallae stream, whose concentrations were 114.81, 38.37 mg/kg and 19.05 mg/kg, respectively. It showed that PAHs concentrations were increased with the decrease of particle size and with the increase of organic carbon contents in three fractioned sediments. From the analysis of PAHs source using LMW/HMW, Phe/Ant, and Fla/Pyr, pyrolysis by-products were mostly showed in Kwangyang Bay and some place showed the mixure of pyrolysis by-products, and crude oil by-products. Besides, the toxic effects assessment on benthic ecosystem for three major pollution sources showed that the PAHs concentration of Taindo which was mainly accumulated with carcinogenic PAHs exceeds ERM value and the PAHs of Sueo and Wallae streams are the degree of ERL value.

Influences of Polycyclic Aromatic Hydrocarbons on Soybean and Rice Growth (다환방향족탄화수소가 콩과 벼의 생육에 미치는 영향)

  • Kim, Young-Ju;Shim, Doo-Bo;Song, Sun-Hwa;Kim, Seok-Hyeon;Chung, Jong-Il;Kim, Min-Chul;Chung, Jeong-Sung;Kim, Hyung-Gon;Shim, Sang-In
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.59 no.2
    • /
    • pp.181-187
    • /
    • 2014
  • Polycyclic aromatic hydrocarbons (PAHs) are a group of ubiquitous hazardous pollutants derived from fossil fuel, various combustion sources and pyrolysis of a wide range of plastics. Because PAHs can be uptake into crop plants, the inhibitory effects on rice and soybean plants were examined in greenhouse and growth chamber experiment. Soil-applied PAHs (phenanthrene of 0, 10, 30, 100 ppm) slightly reduced the plant height and dry weight both in transplanted rice and soybean plant. The inhibitory effect on growth was greater in soybean than rice. Plant height of soybean plants treated by 100 ppm was 58.9 cm and this value was 87.2% of untreated plant. In rice plant, the plant height was less inhibited (96.0% of untreated plant) by 100 ppm at 80 days after treatment (DAT). However, leaf chlorophyll content and chlorophyll fluorescence were less inhibited by PAHs at late growth stage (after heading) although the photosynthesis-related parameters were slightly inhibited from 20 DAT to 70 DAT. In agar medium experiment with infant seedlings, inhibition of seedling length and fresh weight by phenanthrene at 100 ppm were greater as compared to the experiment with adult plant in pot. Seedling length and fresh weight were reduced by 54.2% and 33.3% for rice and 27.9% and 13.2% for soybean, respectively. The results reflected that PAHs were more inhibitory during juvenile stage than adult stage and more inhibitory to rice plant than soybean for juvenile stage.

TPH, $CO_2$ and VOCs Variation Characteristics of Diesel Contaminated Aquifer by In-situ Air Sparging (공기분사공정에 의한 유류오염대수층의 TPH, $CO_2$, VOCs 변화 특성)

  • Lee, Jun-Ho;Park, Kap-Song
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.6
    • /
    • pp.18-27
    • /
    • 2006
  • Air Sparging (IAS, AS) is a ground-water remediation technique, in which organic contaminants are volatilized into air as they rise from saturated to vadose soil zone. This study was conducted to investigate the variation characteristics of TPH, VOCs and $CO_2$ for air sparging of diesel contaminated saturated soil. Initial TPH concentration was 10,000 mg/kg for saturated soil phase and 1,001 mg/L for soil aquifer phase. After 36 days of air sparging, the equilibrium temperature of 2-Dimension experiment system was $24.9{\pm}1.5^{\circ}C$. The saturated soil TPH concentration (in the C10 port close to air diffuser) was reduced to 66.0% of the initial value. The mass amount of $CO_2$ was 3,800 mg and 3,200 mg in air space (C70 port) and in unsaturated soil zone (C50 port), respectively. The VOCs production kinetic parameter was 0.164/day in the air space (C70 port) and 0.182/day in the unsaturated soils (C50 port).

A Study on the Applicability of Soilremediation Technology for Contaminated Sediment in Agro-livestock Reservoir (농축산저수지 오염퇴적토의 토양정화기술에 대한 적용성 연구)

  • Jung, Jaeyun;Chang, Yoonyoung
    • Journal of Environmental Impact Assessment
    • /
    • v.29 no.3
    • /
    • pp.157-181
    • /
    • 2020
  • Sediments from rivers, lakes and marine ports serve as end points for pollutants discharged into the water, and at the same time serve as sources of pollutants that are continuously released into the water. Until now, the contaminated sediments have been landfilled or dumped at sea. Landfilling, however, was expensive and dumping at sea was completely banned due to the London Convention. Therefore, this study applied contaminated sedimentation soil of 'Royal Palace Livestock Complex' as soil purification method. Soil remediation methods were applied to pretreatment, composting, soil washing, electrokinetics, and thermal desorption by selecting overseas application cases and domestically applicable application technologies. As a result of surveying the site for pollutant characteristics, Disolved Oxigen (DO), Suspended Solid (SS), Chemical Oxygen Demand (COD), Total Nitrogen (TN), and Total Phosphorus (TP) exceeded the discharged water quality standard, and especially SS, COD, TN, and TP exceeded the standard several tens to several hundred times. Soil showed high concentrations of copper and zinc, which promote the growth of pig feed, and cadmium exceeded 1 standard of Soil Environment Conservation Act. In the pretreatment technology, hydrocyclone was used for particle size separation, and the fine soil was separated by more than 80%. Composting was performed on organic and Total Petroleum Hydrocarbon (TPH) contaminated soils. TPH was treated within the standard of concern, and E. coli was analyzed to be high in organic matter, and the fertilizer specification was satisfied by applying the optimum composting conditions at 70℃, but the organic matter content was lower than the fertilizer specification. As a result of continuous washing test, Cd has 5 levels of residual material in fine soil. Cu and Zn were mostly composed of ion exchange properties (stage 1), carbonates (stage 2), and iron / manganese oxides (stage 3), which facilitate easy separation of contamination. As a result of applying acid dissolution and multi-stage washing step by step, hydrochloric acid, 1.0M, 1: 3, 200rpm, 60min was analyzed as the optimal washing factor. Most of the contaminated sediments were found to satisfy the Soil Environmental Conservation Act's standards. Therefore, as a result of the applicability test of this study, soil with high heavy metal contamination was used as aggregate by applying soil cleaning after pre-treatment. It was possible to verify that it was efficient to use organic and oil-contaminated soil as compost Maturity after exterminating contaminants and E. coli by applying composting.