• Title/Summary/Keyword: 유동 계수

Search Result 1,313, Processing Time 0.028 seconds

Thrust Characteristics of Through-type Pintle Nozzle at Operating Altitudes Conditions (작동 고도에 따른 관통형 핀틀 노즐의 추력 특성 연구)

  • Jeong, Kiyeon;Hong, Ji-Seok;Heo, Junyoung;Sung, Hong-Gye;Yang, Juneseo;Ha, Dongsung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.4
    • /
    • pp.59-67
    • /
    • 2016
  • Numerical simulations have been performed to investigate thrust characteristics of a through-type pintle nozzle with or without flow separation at various operating altitudes. The low Reynolds number $k-{\varepsilon}$ with compressibility correction proposed by Sarkar are applied. The detail flow structures are observed and static pressures along nozzle wall are compared with experimental results. The flow separation in the pintle nozzle disappears and jet plume strongly expands as its operating altitude increases. To evaluate the thrust characteristics, the momentum term and pressure term of thrust are analyzed. Thrust and thrust coefficient at altitude 20 km are about 10% more than them at the ground 0km.

An Assessment of Friction Factor and Viscosity Models for Predicting the Refrigerant Characteristics in Adiabatic Capillary Tubes (마찰 계수와 점성 계수 모델이 단열 모세관 유동에 미치는 영향 평가)

  • Son, Ki-Dong;Park, Sang-Goo;Jeong, Ji-Hwan;Lee, Sung-Hong;Kim, Lyun-Su
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.3
    • /
    • pp.140-148
    • /
    • 2009
  • Capillary tubes are widely used as expansion device in small refrigeration systems. The refrigerant flowing in the capillary tube experiences frictional and accelerational head losses and flashing simultaneously. In this paper flow characteristics of adiabatic capillary tubes were simulated with various friction factor models, two-phase viscosity models, and two-phase frictional multiplier models. The predicted pressure distribution and mass flow rate are compared with experimental data reported in literature. It is confirmed that the predicting accuracy with homogeneous model can be improved by employing suitable correlations of friction factor, two-phase viscosity and two-phase frictional multiplier.

A Study on the Design of Liquid Flow Control Valves for the Pants and Ships(II) (플랜트 및 선박의 액체용 우량제어밸브 설계에 관한 연구(II))

  • 최순호;배윤영;김태한;한기남;주경인
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.19 no.2
    • /
    • pp.1-9
    • /
    • 1995
  • The processing paper has devoted to the theory of the flow equations, the basic derivative procedure, the meaning of a valve flow coefficient $C_v$, the valve Reynolds R$R_{ev}$ and its application for liquid control valves, which applicable under the condition of a non-critical flow and the case of piping geometry factor $F_p$=1.0. However there is no information on the effects of fittings, a critical flow and the flow resistance coefficient of a valve equivalent to that of pipe which is conveniently used in the piping design. Since the piping systems of plants or ships generally contain various fittings such as expanders and reducers due to different size between pipes and valves and there may occur a critical flow, that a mass flowrate is maintained to be constant, due to the pressure drop in a piping when a liquid is initially maintainder ar a saturated temperature or at nearby corresponding to upstream pressure, system designer should have a knowledge of the effect to flow due to fittings and the critical flow phenomenon of a liquid. This study is performed to inform system designers with the critical flow phenomenon of a liquid, a valve resistance coefficient, a valve geometry factor and their applications.

  • PDF

Interfacial shear stresses and friction factors in nearly-horizontal countercurrent stratified two-phase flow (근사수평 반류성층 2상유동에서의 계면전단응력 및 마찰계수)

  • 이상천;이원석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.1
    • /
    • pp.116-122
    • /
    • 1988
  • Interfacial shear stresses have been determined for countercurrent stratified flow of air and water in a nearly-horizontal rectangular channel, based upon measurements of pressure drop, gas velocity profiles and mean film thickness. A dimensionless correlation for the interfacial friction factor has been developed as a function of the gas and liquid Reynolds numbers. Equivalent surface roughnesses for the interfacial friction factor have been calculated using the Nikuradse correlation and have been compared with the intensity of the wave height fluctuation on the interface. The results show that the interfacial shear stress is mainly affected by turbulent mixing near the interface due to the wave motion rather than by the roughened surface.

Heat Transfer Coefficient and Shear Factor Subjected to Both Oscillating Flow and Oscillating Pressure in Pulse Tubes (주기적인 유동과 압력의 변화를 수반하는 맥동관의 열전달계수와 전단계수)

  • Jeong, Eun-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.3
    • /
    • pp.220-227
    • /
    • 2007
  • Heat transfer and momentum transfer under conditions of both oscillating flow and oscillating pressure within pulse tubes show very different behavior from those for steady state conditions. The analytic solutions of axial velocity and temperature of the gas within pulse tubes were obtained by assuming that the variations in pressure and temperature were purely sinusoidal and small. The shear stress and the heat flux at the tube wall obtained from the solutions are expressed in terms of the cross-sectional averaged velocity, the difference between mean temperature and instantaneous cross-sectional averaged temperature and the difference between mean pressure and instantaneous pressure. It is shown that the complex shear factor, which has been applied to momentum transfer of incompressible oscillating flow, and the complex Nusselt number, which has been applied to either heat transfer with oscillating pressure only or heat transfer of incompressible oscillating flow, could also be used for momentum transfer and heat transfer subjected to both oscillating flow and oscillating pressure, respectively.

An assessment of friction factor and viscosity models for predicting the refrigerant characteristics in adiabatic capillary tubes (마찰 계수와 점성 계수 모델이 단열 모세관 유동에 미치는 영향 평가)

  • Son, Ki-Dong;Park, Sang-Goo;Jeong, Ji-Hwan;Kim, Lyun-Su
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.47-54
    • /
    • 2008
  • Capillary tubes are widely used as expansion device in small refrigeration systems. The refrigerant flowing in the capillary tube experiences frictional and accelerational head losses, and flashing, simultaneously. In this paper flow characteristics of adiabatic capillary tubes with various friction factor models, two-phase viscosity models, and two-phase frictional multiplier models were simulated. The predicted pressure distribution, mass flow rate are compared with experimental data reported in literature. It is confirmed that the predicting accuracy with homogeneous model can be improved by employing the suitable correlations of friction factor and two-phase viscosity model, and two-phase frictional multiplier.

  • PDF

A CFD Prediction of a Micro Critical Nozzle (마이크로 임계노즐 유동의 CFD 예측)

  • 김재형;김희동;박경암
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.2
    • /
    • pp.7-14
    • /
    • 2003
  • Computational work using the axisymmetric, compressible, Navier-Stokes Equations is carried out to predict the discharge coefficient of mass flow through a micro-critical nozzle. Several kinds of turbulence models and wall functions are employed to validate the computational predictions. The computed results are compared with the previous experimented ones. The present computations predict the experimental discharge coefficients with a reasonable accuracy. It is found that the standard $\kappa$-$\varepsilon$turbulence model with the standard wall function gives a best prediction of the discharge coefficients. The displacement thickness of the nozzle wall boundary layer is evaluated at the nozzle throat and is well compared to a prediction obtained by an empirical equation. The resulting displacement thickness of the wall boundary layer is about 2% to 0.6% of the diameter of the nozzle throat for the Reynolds numbers of 2000 to 20000.

Study of the Secondary Flow Effect on the Turbulent Flow Characteristics in Fuel Rod Bundles (핵연료봉 주위의 난류 유동장 특성에 미치는 이차 유동의 영향에 대한 연구)

  • Lee, Kye-Bock;Jang, Ho-Cheol;Lee, Sang-Keun
    • Nuclear Engineering and Technology
    • /
    • v.26 no.3
    • /
    • pp.345-354
    • /
    • 1994
  • Numerical Predictions including secondary flows have been Performed for fully developed turbulent single-phase rod bundle flows. The k-$\varepsilon$ turbulence model(two equation model) for the isotropic eddy viscosity, together with an algebraic stress model for generating secondary velocities, enabled the prediction of mean axial velocities, secondary velocities, and turbulent kinetic energy and turbulent stresses. Comparisons with experiment hate shown that the influence of secondary motion on mean flow and turbulence is dearly evident. The convective transport effects of secondary flow on the velocity field have been identified.

  • PDF