• Title/Summary/Keyword: 유동 계수

Search Result 1,312, Processing Time 0.028 seconds

Flow and Heat Transfer Analysis of a Reactor Coolant Pump in Transient Conditions (원자로 냉각재 펌프의 과도 상태의 유동 및 열전달 해석 연구)

  • Hur, N.;Kim, S.;Yoo, K.-P.;Kim, S. T.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.3 no.2 s.7
    • /
    • pp.24-30
    • /
    • 2000
  • The structural analysis of a reactor coolant pump(RCP) of a nuclear power plant is very important for the safety assessment of the plant. Accurate boundary conditions for the heat transfer coefficient are required for reliable thermal stress analysis of the pump casing, especially in transient operations of the pump since the coolant properties are largely dependent on operational conditions. In the present study, a 3D mixed flow type coolant pump was modeled from the RCP drawings and analyzed in the steady state and number of transient flow conditions by using a commercial code STAR-CD. From the result of the computation, it is seen that the average heat transfer coefficients for the cases considered are found to be the suggested values of the manufacturer, Westinghouse Energy System. The unevenness in local heat transfer coefficients, however, is found to be considerable so that the use of average heat transfer coefficients in all boundaries might not give reliable thermal stress predictions.

  • PDF

Prediction of Flow Behavior and Pressure Drop of Spirally Corrugated Steel Pipe (나선형 파형강관에서의 유동특성 및 압력강하 예측)

  • Park Jong-Hark
    • Journal of computational fluids engineering
    • /
    • v.9 no.2
    • /
    • pp.18-22
    • /
    • 2004
  • Numerical investigation has been conducted to figure out flow behavior and pressure drop characteristics of spirally corrugated steel pipe which is widely used in civil, industrial and agricultural field owing to many advantages such as good corrosion resistance and durability, strength, easy and quick installation. Also the poly-ethylene coating spirally corrugated steel pipe has the long life under condition of sea water immerged. In the present study, flow behavior in the spirally corrugated pipe and influence of P/d/sub h/(ratio of wave pitch to hydraulic diameter) to pressure drop are investigated by CFD with various Reynolds number. And also friction factor is estimated by pressure drop obtained by flow analysis. According to computation results, the flow runs spirally up and down along the spiral corrugation in the vicinity of wall, but the effect of spiral corrugation disappears in core region of pipe. As P/d/sub h/ becomes small, more pressure drop occurs in spirally corrugated Pipe. Besides, friction factor augmentation becomes much larger as Re increases. In case of p/d/sub h/=0.38, Pressure drop and friction factor of spirally corrugated pipe are about four times larger than smooth pipe at Re: 1.46×10/sup 6/.

A NUMERICAL STUDY ON THE CHARACTERISTICS OF ASYMMETRIC VORTICES AND SIDE FORCES ON SLENDER BODIES AT HIGH ANGLES OF ATTACK (세장형 물체 주위 고앙각 유동의 비대칭 와류 및 측력 특성에 관한 수치적 연구)

  • Jung S.K.;Jung J.H.;Myong R.S.;Cho T.H.
    • Journal of computational fluids engineering
    • /
    • v.11 no.3 s.34
    • /
    • pp.22-27
    • /
    • 2006
  • Flow around a guided missile in high maneuver, i.e. at a high angle of attack, shows complex phenomena. It is well known that even in geometrically symmetric conditions the flow around a missile at high angles of attack can generate unexpected large side forces and yaw moments due to asymmetric vortices. In this paper, a CFD code (FLUENT) based on the Navier-Stokes equations was used for the numerical analysis to find a suitable numerical mechanism for generation of asymmetric vortices. It is shown that a numerical technique of applying different surface roughness to a specific area of the missile nose surface gives the best fit in comparison with the experimental results. In addition, a numerical investigation of variations of side forces and pressure distributions with angle of attack and roll angle was conducted for the purpose of identifying the source of vortex asymmetries.

Determination of Minimum Weight of Armor Unit of Rubble-Mound Breakwater (방파제 사석 중량 산정)

  • 유동훈;이대석;구석근
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.13 no.4
    • /
    • pp.319-326
    • /
    • 2001
  • This paper reports on a recent investigation to determine criteria for the design of rubble-mound breakwaters. Existing theories and empirica] equations have been carefully reviewed and a new relation is proposed for the determination of optimum weight of armor unit of rubble-mound breakwater. A new parameter is introduced into the new semi-theoretical equation, which is closely related with the surface particle velocity of wave motion. The laboratory data reported by van der Meer(1987) were used for the determination of proper relations of empiricat parameters introduced into the new empirical equation.

  • PDF

A Study on the Correction Factor of Flow Angel by using the One Dimentional Performance Model of Torque Converter (토크 컨버터의 1차원 성능 모델을 이용한 유동 각도 보정 계수에 관한 연구)

  • Im, Won-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.2 s.173
    • /
    • pp.506-517
    • /
    • 2000
  • One dimensional performance model has been used for the design of torque converter. The model is based on the concept of constant mean flow path and constant flow angle. These constant-assumed para meters make the design procedure to be simple. In practice, some parameters are usually replaced with geometric raw data and, the constant experiential correction factors have been used to minimize the design error. These factors have no definite physical meaning and so they cannot be applied confidently to the other design condition. In this study, the detail dynamic model of torque converter is presented to establish the theoretical background of correction factors. To verify the validity of theoretical model, steady state performance test was carried out on the several input speed. The oil temperature effect on the performance is analysed and adjusted. The constant equivalent flow angles are determined at a part of performance region by comparing the theoretical model and the test data. The sensitivity of correction factors to the input speeds are studied and the change of torus flow is presented.

Numerical Analysis of Y-shaped Check Valve for Power Plant (발전소용 Y형 체크밸브에 관한 수치해석 연구)

  • Lee, Jae-Hun;Kim, Si-Pom;Jeon, Rock-Won;Lee, Geun-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.1
    • /
    • pp.129-135
    • /
    • 2016
  • Various type of valves are manufactured for different industrial uses. Among them, check valves are used to allow fluid to flow in one direction but not in the opposite direction. There are many different types of check valves, but Y-shaped check valves are widely used these days. Not many studies have been carried out on Y-shaped check valves and the flow coefficients obtained through numerical analysis have the problem of low reliability. In order to solve this problem, this study performed flow analysis, flow-structure coupled analysis, and flow coefficient measurement experimentally, and through these analyses derived and verified the flow coefficients and assessed the structural safety based on numerical analysis.

Basic Equations for Explicit Design of Uniformly Rough Pipe (균일조도관의 양해법 설계 기준식)

  • 유동훈
    • Water for future
    • /
    • v.28 no.5
    • /
    • pp.175-189
    • /
    • 1995
  • Pipe design normally requires pump power, discharge rate or pipe diameter for each condition given. Due to several investigators the pipe friction factor can now be estimated by explicit way when the flow condition is provided. In various problems of pipe design, however, the flow condition cannot be pre-determined even for the uniformly rough pipe. In these cases a lot of iterations are often required to have an accurate solution with ordinary approach. This paper presents the explicit way of estimating the discharge rate and pipe diameter without any iteration process being related to non-dimensional physical numbers, power-diameter number, power-discharge number, and discharge-slope number, which enable to develop explicit forms of equations.

  • PDF

Preliminary study for hydraulic properties of fractured rock aquifer using the deep borehole (심부시추공을 활용한 결정질암반 대수층에 대한 수리적 예비연구)

  • Cho, Chung-Ho;Park, Kyung-Woo;An, Sang-Won;Kim, Kyung-Su;Han, Woon-Woo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1929-1933
    • /
    • 2009
  • 수자원 수요가 급증함에 따라 단열 암반 대수층의 지하수를 개발해 이용하려는 연구가 많이 이루어지고 있다. 본 연구에서는 단열암반 대수층의 지하수 유동 특성을 알아보기 위해 한국원자력연구원 연구 지역 내에 NX 규격의 직경 78mm를 갖는 500m 심도의 심부시추공 (DB-01)을 굴착하였다. DB-01에 대한 시추공 단열조사 (BHTV) 및 시추코아 분석을 통해서 심부 시추공에 대한 예비 투수성 구조를 도출하였으며, 투수성이 큰 구조로 단열과 연결된 지점으로 판단되는 심도에 대해서 현장 수리시험을 수행하여, 결정질 암반의 투수성 구조에 대한 수리특성을 규명하였다. 그 결과를 분석하여 비교적 투수성이 큰 심도를 결정질 암반의 대수층이라 정의하였다. 수리특성이 비슷한 3가지의 그룹 중 3그룹은 투수계수도 가장 크고 단열빈도도 밀집되어 있는 것으로 나와 심부 200m에서 250m이하의 이 단열구간은 수자원으로 지하수의 활용이 가능하다고 여겨진다.

  • PDF

Heat Transfer Performance of Pond loop type Heat Exchanger for Ground Source Heat Pump using Extruding Ground Wafer (유출지하수 열원 지열히트펌프용 Pond Loop형 열교환기의 열전달 성능)

  • Park Geun-Woo;Kim Jin-Sang;Lee Eung-Youl
    • New & Renewable Energy
    • /
    • v.2 no.2 s.6
    • /
    • pp.86-93
    • /
    • 2006
  • 유출지하수나 지표수를 열원으로 지열히트펌프의 지초자료로 활용하기 위하여 Pond Loop형 열교환기를 설계, 제작하여 유동이 없는 수조 내에서 수조의 온도가 변화함에 따라 일정한 열교환기 입구온도를 유지하면서 열전달량을 측정하였다. 그 결과 수조를 Heat Source로 사용하는 경우 $5,500{\sim}4,500kcal/h$의 열량이 전달되었고 수조를 Heat Sink로 사용할 경우 $5,200{\sim}3,500kcal/h$의 열량이 전달되었다. 또한 열교환기 관내 유속이 증가함에 따라 열전달량이 증가하는 경향성을 확인할 수 있었고 이는 동시에 열교환기 입출구의 차압을 증가시킴을 알 수 있었다. 열교환기의 설계단계에서 사용하였던 열전달관계식으로 구한 총괄열전달계수, U와 실험값을 통해 유추한 U값을 비교한 결과 실험에 의해 유추된 U값이 $24{\sim}27%$ 설계치보다 크게 나타났다. 본 연구를 통하여 유출지하수 뿐만 아니라 하수 및 하천수를 이용한 지열히트펌프의 기초자료를 확보할 수 있었다.

  • PDF

Study of Heat Transfer and Safety Evaluation for Heating Coils in the Fuel Tank of a Ship (선박 연료탱크 내 가온기의 열유동 및 안전성 평가에 관한 해석)

  • Moon, Jin-Gwon;Park, Jong-Chun;Kwon, Yoo-Hong;Yoo, Won-Seok;Ahn, Soo-Whan
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.5
    • /
    • pp.22-30
    • /
    • 2010
  • The fuel tank of a ship is filled with heavy fuel oil (HFO) that has a very high viscosity. In order to inject the HFO into the engine easily, heating coils are usually installed inside the fuel tank to heat the HFO and lower its viscosity. Currently, several different types of heating coils are used, e.g., fin-type, bare-type, drum-type, and shell-and-tube-type. It is well known that the shell-and-tube-type heating coil has good performance and high efficiency. In this study, experiments were conducted to determine the heat transfer efficiencies of three different shell-and-tube-type heating coils. Heat transfer efficiency was evaluated by using FLUENT 6.3.26 software. Also, structural safety was assessed by using ANSYS.simulation software.