• Title/Summary/Keyword: 유동유기소음

Search Result 27, Processing Time 0.019 seconds

Calculation of Near and Far Acoustic Fields Due to a Spinning Vortex Pair in Free Field (자유흐름장 내의 회전하는 와류쌍에 의한 근거리 및 원거리 음장해석)

  • Koo Sam-Ok;Ryu Ki-Wahn;Lee Duck-Joo
    • Journal of computational fluids engineering
    • /
    • v.2 no.1
    • /
    • pp.29-36
    • /
    • 1997
  • 자유흐름장에 놓여 있는 회전 와류쌍을 음원으로 갖는 비정상 유동장에서 사극음원이 음장에 미치는 효과를 알아보기 위해 이차원 음장 수치해석을 시도하였다. 비압축성 유동장에 대한 비정상 수력정보를 기반으로 오일러식에서 교란 압축성 소음항을 도출하였다. 원거리 자유 경계면은 비반사 경계조건을 이용하여 매우 안정된 해를 얻을 수 있었다. 계산된 결과들은 MAE 방법과 비교하여 정확도를 입증하였다. 본 연구를 통해 비압축성 압력교란을 원천항으로 하여 물체가 존재하지 않는 경우에도 사극음원에 의한 음장을 수치적으로 계산이 가능함을 입증하였다.

  • PDF

Sound Generation Due to a Spinning Vortex Pair Near the Flat Wall (평면 벽 근처에서 회전하는 와류쌍에 의한 음향발생)

  • Koo Sam-Ok;Ryu Ki-Wahn;Lee Duck-Joo
    • Journal of computational fluids engineering
    • /
    • v.2 no.1
    • /
    • pp.37-45
    • /
    • 1997
  • 벽면 근처에 가까이 위치하는 회전와류쌍을 음원으로 갖는 비정상 유동장에서 벽면이 음장에 미치는 효과를 알아보기 위해 이차원 음장 수치해석을 시도하였다. 비압축성 유동장에 대한 비정상 수력정보를 기반으로 오일러식에서 교란 압축성 소음항을 도출하였다. 원거리 자유 경계면은 비반사 경계조건을 이용하였으며, 벽면에서는 벽면 효과를 음향장에 고려하였다. 자유흐름장에 놓인 와류쌍이 대칭인 나선팔을 갖는 반면에, 벽면이 있는 경우엔 음파가 전달되는 경로를 따라 방향성이 존재함을 알 수 있었다. 본 연구를 통하여 벽면이 존재하는 경우에 비정상 수력정보를 이용하여 근거리와 원거리 음장을 동시에 수행할 수 있음을 알아내었다.

  • PDF

An Alysis of Flow and Noise Source for Vacuum Cleaner Centrigugal Fan (진공청소기 원심홴의 유동과 소음원 해석)

  • 전완호;유기완;이덕주;이승갑
    • Journal of KSNVE
    • /
    • v.7 no.1
    • /
    • pp.99-106
    • /
    • 1997
  • Centrigugal fans are widely used due to their ability to achieve relatively high pressure ratios in a short axial distance compared to axial fans. Because of their widespread use, the noise generated by these machines causes one of serious problems. In general, centrigugal fan noise is often dominated by tones at BPF(blade passage frequency) and its higher harmonics. This is a consequence of the strong interaction between the periodic flow discharged radially from the impeller and the stator blades or the cutoff. But in vacuum cleaner fan the noise is dominated by not only the discrete tones of BPF but also broadband frequencies. In this study we investigate the mechanism of broadband noise and predict for the unsteady flow field and the acoustic pressure field associated with the centrifugal fan. DVM(discrete vortex method) is used to calculates the flow field and the Lowson's method is used to predict the acoustic pressures. From the results we find that the broadband noise of a circular casing centrifugal fan is due to the unsteady force fluctuation around the impeller blades related to the vortex shedding. The unsteady forces associated with the shed vortices at impeller and related to the interactions to the diffuser and the exit.

  • PDF

A study on the reduction of the flow-induced noise in turbo-charger diesel engines (터보 차져 디젤 엔진에서의 기류음 감소를 위한 연구)

  • Kang, Woong;Kim, Hyung-Jin;Sung, Hyung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2913-2917
    • /
    • 2007
  • Turbocharger has been widely used in many passenger cars in application with diesel engines because of high power and fuel efficiency. However, flow-induced noise (whoosh or hissing noise) which is generated within the compressor during its operation at marginal surge line can deteriorate noise characteristics. Hissing noise excitation was associated with the generation of turbulence within the turbocharger compressor and radiated through the transmission path in turbocharger system. In this study, a sharp-edged reactive-type muffler was devised and installed in the transmission path to reduce the hissing noise. Acoustic and fluid dynamic characteristics for the muffler were investigated which is related to the unsteadiness of turbulence and pressure in turbocharger system. A transfer matrix method was used to analyze the transmission loss of the muffler. Simple expansion muffler with extended tube of the reactive type is proposed for the reduction of high frequency component noise. Turbulence computation was carried out by a standard ${\kappa}-{\varepsilon}$ model. An optimal design condition of the muffler was obtained by extensive acoustic and fluid dynamic analysis on the engine dynamometer with anechoic chamber. A significant reduction of the hissing noise was achieved at the optimal design of the muffler as compared with the conventional turbocharger system.

  • PDF

Analysis of Fluid-elastic Instability In the CE-type Steam Generator Tube (CE형 증기발생기 전열관에 대한 유체탄성 불안정성 해석)

  • 박치용;유기완
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.4
    • /
    • pp.261-271
    • /
    • 2002
  • The fluid-elastic instability analysis of the U-tube bundle inside the steam generator is very important not only for detailed design stage of the SG but also for the change of operating condition of the nuclear powerplant. However the calculation procedure for the fluid-elastic instability was so complicated that the consolidated computer program has not been developed until now. In this study, the numerical calculation procedure and the computer program to obtain the stability ratio were developed. The thermal-hydraulic data in the region of secondary side of steam generator was obtained from executing the ATHOS3 code. The distribution of the fluid density can be calculated by using the void fraction, enthalpy, and operating pressure. The effective mass distribution along the U-tube was required to calculate natural frequency and dynamic mode shape using the ANSYS ver. 5.6 code. Finally, stability ratios for selected tubes of the CE type steam generator were computed. We considered the YGN 3.4 nuclear powerplant as the model plant, and stability ratios were investigated at the flow exit region of the U-tube. From our results, stability ratios at the central and the outside region of the tube bundle are much higher than those of other region.

Experimental Study on Wall Pressure Fluctuations in the Turbulent Boundary Layer on a Flat-Plate (평판 난류경계층에서의 벽 압력섭동에 대한 실험적 연구)

  • Lee, Seungbae;Kim, Hooi-Joong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.6
    • /
    • pp.722-733
    • /
    • 1999
  • The wall pressure fluctuations of a turbulent boundary layer over a flat plate have been investigated in an anechoic wind tunnel facility. The anechoic wind tunnel consists of acoustically-lined duct, muffler, and splitter-type silencer for noise suppression and vanes for reducing head losses involved. To improve spectra characteristics in high frequency range, a 1/8" pressure-type microphone sensor, which has a pin-holed cap of various diameters, was employed in this experiment. It was shown that the pin-holed microphone sensor with a dimensionless diameter $d^+$ of 7.1 resolved the high frequency pressure fluctuations most effectively among ones with various pin-hole diameters. The measured wall pressure spectra in terms of three types of scaling parameters were in good agreement with other experimental and numerical results. The pressure events of high amplitude were found to contribute to total fluctuating pressure energies in the turbulent boundary layer significantly and supposed to radiate to the far-field effectively.

Numerical investigation on the flow noise reduction due to curved pipe based on wavenumber-frequency analysis in pressure relief valve pipe system (감압 밸브 배관 시스템 내 파수-주파수 분석을 통한 곡관의 유동소음 저감에 대한 수치적 연구)

  • Garam, Ku;Cheolung, Cheong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.6
    • /
    • pp.705-712
    • /
    • 2022
  • A sudden pressure drop caused by the pressure relief valve acts as a strong noise source and propagates the compressible pressure fluctuation along the pipe wall, which becomes a excitation source of Acoustic Induced Vibration (AIV). Therefore, in this study, the numerical methodology is developed to evaluate the reduction effect of compressible pressure fluctuation due to curved pipe in the pressure relief valve system. To describe the acoustic wave caused by density fluctuation, unsteady compressible Large Eddy Simulation (LES) technique, which is high accuracy numerical method, Smagorinsky-Lilly subgrid scale model is applied. Wavenumber-frequency analysis is performed to extract the compressible pressure fluctuation component, which is propagated along the pipe, from the flow field, and it is based on the wall pressure on the upstream and downstream pipe from the curved pipe. It is shown that the plane wave and the 1st mode component in radial direction are dominant along the downstream direction, and the overall acoustic power was reduced by 3 dB through the curved pipe. From these results, the noise reduction effect caused by curved pipe is confirmed.