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Sound Generation Due to a Spinning Vortex Pair Near the

Flat Wall
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Nomenclature T = period of rotation (spinning vortex pair)
t = time
A, B = Jacobian matrices U = vector of primitive variables
ag = ambient speed of sound t,v = hydrodynamic velocity components
E,F = flux vectors in the £ and 7 directions ¢/,v" = acoustic velocity components
h = vertical distance from the wall X, Y = eigen-vector matrix of A and B
J = Jacobian metrics z,y = Cartesian coordinates
Jo = Bessel function of the 1 kind of order 2 Y» = Bessel function of the 2™ kind of order 2
k = wave number (2w/ag) I' = Circulation (+: counterclockwise)
M, = rotating Mach number v = ratio of specific heat
P = hydrodynamic pressure 0 = angular argument
D = time-mean hydrodynamic pressure A = wave length
P = acoustic pressure A, M = diagonal matrix of A and B
Q = vector of conservative variables ¢,n = body-fitted coordinates
re = core radius of the Scully vortex model po = ambient density
rg = radius of rotation of vortex pair p1 = hydrodynamic density correction
S, S; = source term in acoustic equation p = acoustic density
o = weighting factor in time stepping
MY AR, BRAYBIF AL ¢ = velocity potential
TatM s, SR UAD |G BB E w = angular velocity
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1. Introduction

The motions of vorticity are considered to be
directly related to the source of sound gener-
ated by vortical flows. These phenomena have
been studied both theoretically [1 — 7] and nu-
merically (8 — 19] by many researchers.

In accordance with the developments in
computational fluid dynamics, computational
aeroacoustics (CAA) provides a useful tool for
analyzing the mechanism of aeroacoustic sound
generation and propagation. There are several
approaches in CAA to calculate the sound field.
Lele (8], Colonius et al [9], Mitchell et al.
(10}, and Tam and Webb [11] have obtained
results by direct simulation of Navier-Stokes
equations. Direct simulation of Navier-Stokes
equations is the most desirable method, but it
requires a higher order numerical scheme. Huh
et el [12] and Watson and Myers [13] solved
the perturbed acoustic equations derived from
the Euler equations to calculate propagation,
scattering, or diffraction of incoming waves.
However, the perturbed Euler equations can-
not predict the sound generated by inherent
unsteadiness of the flow because of the homo-
geneity of the equations.

Hardin and Pope [14,15] proposed a com-
putational aeroacoustics technique, where they
split the Fuler equations into hydrodynamic
terms and perturbed acoustic terms. The nov-
elty of their approach is found in the intro-
duction of a new variable named ’hydrody-
namic density fluctuations’, which is the ba-
sic difference in the formulation of governing
equations from others [12,13]. They applied
the technique to the problems of a pulsating
and an oscillating sphere, which were acting
as a monopole or a dipole source with sound-
generating body surfaces.

Based on the hydrodynamic density fluctu-
ations, we numerically studied the sound gen-
eration by quadrupole sources. The acoustic
field induced by a spinning vortex pair is cal-
culated because it has analytic solutions and
represents the basic acoustic field generated by

turbulent shear flows, jet flows, edge tones, etc..

[5]. It is verified that the acoustic field calcu-
lated numerically agrees well with the analyti-

cal one obtained by matched asymptotic expan-
sion (MAE). The advantage of this approach is
that a conventional numerical scheme can be
used to calculate the acoustic field.

In this paper, we are interested in the effect
of a wall on the acoustic field generated by spin-
ning vortices. This flow represents the basic
model of the acoustic field generated by turbu-
lent shear flows from the wall boundary layer.
In the boundary layer, some coherent motions
exist near the wall. These coherent motions
affect the unsteady pressure fluctuations near
the wall. The unsteady pressure fluctuations
are strongly related to the near field sound, and
parts of those energies are radiated to the far
field acoustic energy. We would like to simulate
near and far acoustic fields simultaneously.

2. Governing Equations

To derive the two-dimensional acoustic equa-
tions from the compressible flow governing
equations, let us split the velocity, pressure and
density terms into hydrodynamic terms and
fluctuation terms respectively as belows:

i=u+u

T=v+v

. 1
P=p+y @
P=po+p+p

where p/,u’,v' and p’ are unknown perturbed
compressible acoustic density, velocities and
pressure respectively; and the variables of u, v,
and p are known incompressible hydrodynamic
solutions of time-dependent velocity compo-
nents, and pressure, respectively. The vari-
able p; is the key parameter, which relates
the incompressible hydrodynamic flow field as
the sound source to the compressible acoustic
filed. The parameter p;, defined as the ’hy-
drodynamic density’, is the density fluctuation
induced by the hydrodynamic pressure fluctu-
ation in the flow field. The quantity is defined
by the isentropic relation as [15):

o= %(P—ﬁ) @
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where

1 T
P= i fo pat
The hydrodynamic pressure p is obtained by
the unsteady Bernoulli equation as:

.0 1 5
P=p0—pog, §po(u +v%) (3)

where py and pg are the constant quantities in
the flow field.

From the above relations, the perturbed
acoustic equations derived from the Euler equa-
tions for two-dimensional acoustic fields in-
duced by unsteady, inviscid flow can be ex-
pressed in a non-dimensional generalized curvi-
linear coordinates form as:

8Q OE  OF _
St e o =S (4)

where

i
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Fig. 1 Spinning vortex pair on a flat wall
and its image.

The density, velocity and pressure vari-
ables in Eq. (1) are non-dimensionalized by
po, ao and poad, respectively [16,17). The
length and time variables in Eq. (4) are non-
dimensionalized by 79 and ro/ag respectively.
From the isentropic relation, the pressure fluc-
tuation can be represented as below:

1
p’=:7(1+p1+p')’—p (5)

3. Description of the Flow Field

The flow fields are simplified as an unsteady
two-dimensional spinning vortex pair near the
flat wall. The flow field can be assumed as a
potential flow. The effect of the wall is rep-
resented by the mirror image method. Fig.
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1 represents the schematic view of the spin-
ning vortex pair on the flat wall with its im-
age. The two point vortices, separated by a
distance of 2ry with circulation I', has a period
T = 8n*r2/T, rotation speed w = I'/(4wrd),
wave length A = wag/w, and rotating Mach
number M, = I'/(4nrpap). In this study, the
center of the vortex pair is assumed to be fixed
and the vortex pair rotates in a circular motion
with radius r¢ in the flow field.

In the numerical analysis for the acoustic
field due to spinning vortices, a vortex core
model is required to avoid the singularity at
the center of the vortex. We use the Scully
vortex model {21] as below:

Ir
Vo= 2m(r2 + r2) (6)

where Vp is the tangential velocity, r is a ra-
dial distance from the vortex center, and r, is
the core radius. The Scully vortex model has
smoother velocity distribution than the Rank-
ine vortex model.

4. Boundary Conditions and
Scheme

Boundary conditions are very important for
acoustic problems. We used the non-reflecting
boundary conditions based on the impedence
condition on the free field boundary to account
for the oblique wave on the free boundary.
Thompson'’s technique [20] for a generalized co-
ordinates system is used to obtain the density
fluctuation.

First, to apply the boundary conditions, Eq.
(4) is linearized and recast in the following
form:

au ou 8uU .
Q1W+E13§_—+F1%——S (M
where
U= [p/’ u/’ v/]T
o OE OF
Q Q E = F =

ik au’ au

or

8U  8U _8U
B HAGE tBgy =S (8)

where

A=Q'E;, B=Q;'F;, §;=Q;!s
Matrices A and B can be diagonalized by the

similarity transformations.
XAX 1=\, YBY'=M

where the diagonal elements of A and M are
the eigen values of A and B and can easily be
obtained as:

A:diag(U—,/gg+§3,U,U+,/§3+§§)
M:diag(v-,/nyng,V,VJr,/n£+n3)

Thompson’s boundary conditions [20], how-
ever, have the limitation of not reproducing
the outgoing acoustic signals except for planar
waves. To compensate for this limitation, addi-
tional physical boundary conditions are consid-
ered here. The basic concept is that the acous-
tic wave radiating through the far boundary is
thought to be a cylindrical plane wave. This
physical condition with an isentropic assump-
tion gives the relations [17]:

P = tpga = ¢ (9)

In the above modified boundary conditions,
only g/ is calculated from Thompson’s non-
reflecting boundary condition, and the remain-
ing two components are evaluated from above
equation.

The acoustic boundary condition on the rigid
wall is similar to the flow boundary condition
as belows:

V=0 V=0, %—o, o
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easily be obtained. In the MAE method, the
solutions of the equations for incompressible
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Fig. 2 Analytical acoustic pressure

contour of the spinning vortex pair for
I'/agro = 1, M, = 0.0796 in the free field,
(—2.5E —4 < p/ < 2.5E — 4, 16-steps).

MacCormack’s predictor-corrector scheme
has gained wide use and acceptance for solv-
ing time-dependent problems in fluid dynamics
[22] and is used in the present study to inte-
grate both the interior and the boundary points
of Eq. (4). The time-step to meet the Courant-
Friedrichs-Lewy (CFL) criterion is determined
according to:

At = O’t/AtC (11)
where
_ (o, vl L My
Atc_[A§+An+ao A§2+An2

and o} is a positive constant less than 1. In this
study, we used o; = 0.9 for the flat wall and 0.6
for the circular cylinder problem.

5. Results and discussions

5.1. Verification

From the MAE, the theoretical solution for
the spinning vortex pair in the free field can

motion in the flow domain and a homogeneous
compressible wave equation in the acoustic field
are matched in an intermediate domain in such
a way as to give an asymptotically valid so-
lution. From the MAE, the amplitude of the
pressure fluctuation for the spinning vortex
pair in the free field can be represented as be-
low {2],[18]:

2
I‘_poa;_szl (Jo(kr)sin2(6 — wt)

+Ya(kr) cos 206 — wt)) (12)

The pressure contour of above equation is
shown in Fig. 2 for I'/agrg = 1, M, = 0.0796
at time £ = 10T, which results in the typi-
cal acoustic pattern of the quadrupole acoustic
source in the free field. The acoustic pressures

on the two far boundary lines are shown in Fig.
3.
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Fig. 3 Acoustic pressures on the boundary
lines, y/ro = 0 and y/ro = 200, for the
spinning vortex pair in the free field (no rigid
wall boundaries) for I'/agro = 1, M, = 0.0796
at time t = 107"

The numerical boundary conditions in Eq.
(10) are compared with the image method by
calculating the spinning vortex on a flat plane
as shown in Fig. 1. Fig. 4 shows the acous-
tic pressure distributions for y/rg = 60 and
y/ro = 140. In this figure, we compared the re-
sult of the numerical wall boundary conditions
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with the result obtained by using the acoustic grid system of 101 x 101. The spinning vortex is
image method for verification of the boundary assumed to start abruptly at time ¢t = 0. Ana-

conditions. lytical solutions of the hydrodynamic flow field
are evaluated at each time-step over the com-

[ S — — . putational domain and are used as the source
Image Method term in Eq. (7). The rigid wall is located at

1 yor, = 60 °©  wallB.C. y/ro = 0 as shown in Fig. 1, and the acous-
tic boundary conditions are shown in Eq. (10);
that is, rigid wall boundary conditions.

JE-4

p' QE0

-3E-4

Fig. 4 Comparison of acoustic pressure dis-
tribution along the y/rg = 60,140 lines for
T'/agrg =1, M, = 0.0796 at time t = 107

200

Fig. 5b Three-dimensional graphical view of
acoustic pressure for I'/apro = 1, M, = 0.0796,
h/rg = 40 at time £ = 10T. The upper-left
side is wall boundary (z-direction represents
the magnitude of ' x 200).

y/ra 100
1.00
0.75}
= oso}
ot "9; 025}
-100 0 100 a /
a 0.00 p-=reg=g=1 i
xIr, <
0251
Fig. B5a Acoustic pressure contour for -0.50f )
T/agro = 1, M, = 0.0796, h/ro = 40 at time -0.75} :
t = 10T. The dashed line is negative value 4 e N
(—2.5E —4 <p’ < 2.5E _4, 16-steps). '0%.0 05 10 15 20 25 30 35 40
ta fr,x107
5.2. Flat wall effects Fig. 5¢ Comparison of acoustic pres-

‘ sure and wall pressure variation at
The computational domain has rectangular the field point A, B according to time
dimensions of (L/ro x L /7o) = (200 x 200) and (point A: (z/ro,y/m0) = (0,0), point B:
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(z/ro,y/ro) = (100,100)) for T/agro = 1,
M, =0.0796, k/ro = 40 at time ¢ = 107"

200 g7

Fig. 6a Acoustic pressure contour for
I'/agro = 1, M, = 0.0796, h/rp = 4 at time
t = 107. The dashed line is negative value
(—2.5F —4 < p/ < 2.5F — 4, 16-steps).
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Fig. = 6b Comparison of acoustic pres-
sures and wall pressure variation at the
field point A, B and C according to time
(point A: (z/ro,y/ro) = (0,0), point B:
(z/ro,y/r0) = (100,100), and point C:
(z/ro,y/r0) = (0,104) which has 100y above
the source) for I'/agrg = 1, M, = 0.0796,
h/ro = 4 at time t = 107"

Fig. 5a represents the acoustic pressure con-
tours for a case of I'/agry = 1, M, = 0.0796,
h/ro = 40. In this case, the distance from the
wall to the acoustic source is nearly 1A{(A/ro =
39.47). The three-dimensional graphical view
is represented in Fig. 5b. From Fig. 5a, we can
observe the interaction phenomena between the
waves from the spinning vortex pair and the
reflecting waves from the rigid flat wall. We
can observed that the acoustic waves are radi-
ated from around (2, y) = (0, 0) to the far field.
Three series of wave propagating modes on the
left field, one series of them on the midfield,
and one series of them on the right field can
be observed. Unlike the spinning vortex in the
free field as shown in Fig. 2, the results repre-
sent an asymmetric directivity pattern. In Fig.
5a, the waves are generated from the spinning
vortex pair, and propagated toward the wall.
The incident wave angles on the left wall are
greater than those on the right wall. When
the incident angle is zero (grazing wave), no
reflecting waves are generated from the wall.
The more growing the incident angle, the more
growing the interfering region. For this rea-
son, wave interference of the left field by the
reflection wave becomes more severe than that
of the right field. These phenomena break the
symmetric directivity pattern of the spinning
quadrupole source.

Fig. 5c represents the hydrodynamic pres-
sure fluctuation and acoustic pressure varia-
tions on the wall (point A) and acoustic pres-
sure variation in the field (point B) accord-
ing to the non-dimensional time (point A:
(1‘/"‘0, y/To) = (O’ 0), point B: (l‘/"”o,y/"‘o) =
(100, 100)).

Fig. 6a represents the acoustic pressure con-
tours for a case of I'/agrg = 1, M, = 0.0796,
h/ro = 4 which can be compared with the re-
sult of Fig. 5a. The distance from the wall
to the acoustic source is nearly 0.1X. We can
observe different series of acoustic peaks in left
and right fields. Fig. 6b represents the hy-
drodynamic pressure fluctuation and acoustic
pressure variations on the wall (point A) and
acoustic pressure variation in the field (point
B) according to non-dimensional time (point
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A: (z/ro,y/70) = (0,0), point B: (z/r0,y/70) =
(100, 100), and point C: (z/rq,y/ro) = (0, 104)
which has 100rp above the source).

From Fig. 5c, the hydrodynamic pressure
fluctuation is not larger than the acoustic pres-
sure fluctuation at the wall (point A). In Fig.
6b, however, the hydrodynamic pressure fluctu-
ation has a larger value than acoustic pressure
 fluctuation at that point. In spite of this main
difference, we can find that the effect of acous-
tic source separation from the wall does not
severely affect acoustic pressure fluctuation at
the far field.

6. Conclusion

A computational aeroacoustic technique,
which splits Euler equations into hydrodynamic
terms and perturbed acoustic terms, is applied
to the case of a spinning vortex pair near a flat
wall. It is found that the sound generated by
the unsteady vortical flows in the presence of
a body surface can be calculated by using the
source terms due to the hydrodynamic pressure
fluctuations. The spinning vortex pair in a free
field generates a typical quadrupole directivity
pattern, whereas for the spinning vortex pair
near the wall, the acoustic directivity patterns
show a scattering acoustic field due to the wall.
From the above reason, a more silent zone can
exist in the near field region as compared with
the far field. It will be possible for the per-
turbed Euler equations based on the hydrody-
namic density to predict more complex acoustic
fields when the flow information is obtained.
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