• Title/Summary/Keyword: 유동에 수직방향

Search Result 151, Processing Time 0.025 seconds

Characterization of a TSV sputtering equipment by numerical modeling (수치 모델을 이용한 TSV 스퍼터링 장비의 특성 해석)

  • Ju, Jeong-Hun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.46-46
    • /
    • 2018
  • 메모리 소자의 수요가 데스크톱 컴퓨터의 정체와 모바일 기기의 폭발적인 증가로 NAND flash 메모리의 고집적화로 이어져서 3차원 집적 기술의 고도화가 중요한 요소가 되고 있다. 1 mm 정도의 얇은 웨이퍼 상에 만들어지는 메모리 소자는 실제 두께는 몇 마이크로미터 되지 않는다. 수직방향으로 여러 장의 웨이퍼를 연결하면 폭 방향으로 이미 거의 한계에 도달해있는 크기 축소(shrinking) 기술에 의지 하지 않고서도 메모리 소자의 용량을 증대 시킬 수 있다. CPU, AP등의 논리 연산 소자의 경우에는 발열 문제로 3D stacking 기술의 구현이 쉽지 않지만 메모리 소자의 경우에는 저 전력화를 통해서 실용화가 시작되었다. 스마트폰, 휴대용 보조 저장 매체(USB memory, SSD)등에 수 십 GB의 용량이 보편적인 현재, FEOL, BEOL 기술을 모두 가지고 있는 국내의 반도체 소자 업체들은 자연스럽게 TSV 기술과 이에 필요한 장비의 개발에 관심을 가지게 되었다. 특히 이 중 TSV용 스퍼터링 장치는 transistor의 main contact 공정에 전 세계 시장의 90% 이상을 점유하고 있는 글로벌 업체의 경우에도 완전히 만족스러운 장비를 공급하지는 못하고 있는 상태여서 연구 개발의 적절한 시기이다. 기본 개념은 일반적인 마그네트론 스퍼터링이 중성 입자를 타겟 표면에서 발생시키는데 이를 다시 추가적인 전력 공급으로 전자 - 중성 충돌로 인한 이온화 과정을 추가하고 여기서 발생된 타겟 이온들을 웨이퍼의 표면에 최대한 수직 방향으로 입사시키려는 노력이 핵심이다. 본 발표에서는 고전력 이온화 스퍼터링 시스템의 자기장 해석, 냉각 효율 해석, 멀티 모듈 회전 자석 음극에 대한 동역학적 분석 결과를 발표한다. 그림1에는 이중 회전 모듈에 대한 다물체 동역학 해석을 Adams s/w package로 해석하기 위하여 작성한 모델이고 그림2는 180도 회전한 서브 모듈의 위상이 음극 냉각에 미치는 효과를 CFD-ACE+로 유동 해석한 결과를 나타내고 있다.

  • PDF

The 3D numerical analysis on runway with the flow in direction perpendicular to the runway (활주로 방향에 수직인 유동이 활주로에 미치는 영향에 대한 3차원 수치해석)

  • Hong, Gyo-Young;Sheen, Dong-Jin
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.4
    • /
    • pp.479-488
    • /
    • 2010
  • The aim of this paper is to research the change in the turbulent flow and the AOA occurred by the wind perpendicular to the direction of runway according to the three-dimensional numerical analysis. The maximum amplitude of AOA variation on runway reached $6^{\circ}$ within 1 second because of the wake formed by the constructions in the vicinity of the airport. The overall effects appeared in aperiodic forms. It was also observed the rapid flow generated between the buildings shifted into the existing wake and eventually merged with it. It is expected thai the strong wake will cause instability during takeoff and landing.

Numerical Simulation of Laminar Flows for a Circular Cylinder Vertically Piercing Free Surface (수직원통 주위의 자유표면 층류운동의 수치해석)

  • Bum-Sang Yoon;Yoon-Ho Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.1
    • /
    • pp.104-114
    • /
    • 1993
  • In this paper, effects of free surface on viscous flow is investigated. Continuity equation coupled with Navier-Stokes equations are solved numerically by using an artificial compressibility method[1, 2]. The body-fitted generalized curvilinear coordinate system is employed to deal with arbitrary body shape. The IAF scheme with finite difference method is used to solve the equations, and a diagonal algorithm is applied to time-varying Jacobian matrices for the computational economics. Free surface shape is obtained by applying zero pressure condition to still water surface at each time step. A numerical test is made for larminar flow around a circular cylinder vertically piercing the free surface. Computed flow patterns are largely affected by the existance of free surface in low Reynolds number flows treated in this paper. Free surface causes viscous pressure drag to vary much in depth direction in accordance with the variations of flow pattern.

  • PDF

A Study on Velocity-Log Conductivity, Velocity-Head Cross Covariances in Aquifers with Nonstationary Conductivity Fields (비정체형 지하대수층의 속도-대수투수계수, 속도-수두 교차공분산에 관한 연구)

  • Seong, Gwan-Je
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.4
    • /
    • pp.363-373
    • /
    • 1998
  • In this study, random flow field in a nonstationary porous formation is characterized through cross covariances of the velocity with the log conductivity and the head. The hydraulic head and the velocity in saturated aquifers are found through stochastic analysis of a steady, two-dimensional flow field without recharge. Expression for these cross covariances are obtained in quasi-analytic forms all in terms of the parameters which characterize the nonstationary conductivity field and the average head gradient. The cross covariances with a Gaussian correlation function for the log conductivity are presented for two particular cases where the trend is either parallel or perpendicular to the mean head gradient and for separation distances along and across the mean flow direction. The results may be of particular importance in transport predictions and conditioning on field measurements when the log conductivity field is suspected to be nonstationary and also serve as a benchmark for testing nonstationary numerical codes. Keywords : cross covariance, nonstationary conductivity field, saturated aquifer, stochastic analysis.

  • PDF

Numerical Simulation of Vertical Wall fires II. Propane Fire (수직벽화재의 수치 시뮬레이션 II. 프로판 화재)

  • Park, Woe-Chul;Trouve, Arnaud
    • Fire Science and Engineering
    • /
    • v.22 no.3
    • /
    • pp.188-193
    • /
    • 2008
  • Numerical simulation was carried out for a propane fire of mass transfer rate 3g/m^2-s$ on a 1m high vertical wall. The objectives of this study are to confirm the outcomes of evaluation of the simulator through simulation of natural convection, and to compare the results of the wall fire with those of previous studies. It was confirmed that the simulated boundary layer was laminar at C_s=0.2$ while it was turbulent at C_s=0.1$. The z direction velocity showed lack of turbulent mixing as seen in the natural convection case, and the profiles of temperature and velocities were in relatively good agreement with those of experiment and previous simulation. It was found that the air entrainment into the boundary layer was well predicted.

Analysis of the Flow-Induced Stress Waves in Lavered Structures (적층구조물내의 유체유발 탄성응력파 해석)

  • 이준근;이우식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1995.04a
    • /
    • pp.328-333
    • /
    • 1995
  • 본 연구에서는 난류경계층 압력유동을 받는 구조물의 탄성응력파의 전파특성을 파동역할을 이용하여 해석하였다. 기존의 연구에서는 직각좌표계를 이용하여 난류운동이 동일한 한 방향으로 흐르는 경우에 대해 탄성응력파의 전파특성을 해석하였으나, 본 연구에서는 유체가 구조물의 표면에 수직으로 입사하여 방사형으로 흘러나갈 경우에 발생하는 탄성응력파의 전파 특성을 극좌표계를 이용하여 해석하였다. 또한 기초 구조물의 깊이방향으로 전파되는 탄성응력파를 감소시키기 위해 기초구조물의 표면에 접착시키는 탄성중합체층을 설계하는데 보다 효율적으로 응용할 수 있는 단순화된 1자유도계 모델을 유도하였다.

  • PDF

The Flow Control by a Vertical Splitter Plate for a Square Prism near a Wall (벽면 근처에 놓인 정방형주의 수직 분할판에 의한 유동 제어)

  • Ro, Ki-Deok;Cho, Ji-Ryong;Oh, Se-Kyung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.1
    • /
    • pp.94-100
    • /
    • 2012
  • The passive control by vertical splitter plate of fluid force acting on a square prism near a plane wall was studied by measuring of fluid force on the prism and by visualization of the flow field using PIV. The hight of the splitter plate was 10% of the square width. The experimental parameters were the attaching position of vertical splitter plate and the space ratios G/B to the prism height. Time variation of vorticity was most remarkable at 3.0B(B: prism height) position toward wake direction from the center of the prism. The point of inflection of average lift coefficient and Strouhal number on the prism were represented at the space ratio G/B=0.4~0.6 for the prism having vertical splitter plate. The drag of the prism was reduced average 5.0% with the space ratios by attaching the vertical splitter plate at the upper and rear corner on the prism. In this case, the size of the separated region on the upside of the prism was smaller than that of prism having no the splitter plate.

Grid Tests for Large Eddy Simulation of Transitional Flows around Turbulence Stimulators (난류 촉진기 주위 천이 유동의 대형 와 모사를 위한 격자 테스트)

  • Lee, Sang Bong;Park, Dong Woo;Paik, Kwang-Jun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.1
    • /
    • pp.112-121
    • /
    • 2017
  • Large eddy simulations of transitional flows around a stud installed on a flat plate have been performed to investigate an influence of grid resolution on turbulence stimulation by the stud. Because streamwise vortical structures generated by the stud played an important role in turbulence stimulation of boundary layer, streamwise vorticity was compared in the wake region behind the stud when the number of grids increased or decreased by a ratio of ${\sqrt{2}}$ in streamwise, wall-normal and spanwise directions respectively. The streamwise vorticity was shown to be mainly affected by spanwise grid resolution (${\Delta}z^+$) rather than streamwise and wall-normal grid resolution. In a viewpoint of numerical efficiency as well as physical resolution, ${\Delta}x^+{_{min}}=7.6$, ${\Delta}x^+{_{max}}=41$, ${\Delta}y^+{_{wall}}=0.25$ and ${\Delta}z^+=7.6$ was found to be desirable. Once a grid resolution was determined in each direction, a grid verification was carried out by increasing or decreasing the grid resolution y a ratio of ${\sqrt{2}}$ in all directions. The grid uncertainties of pressure and drag coefficients were 21.6 % and 2.8 % while the corrected uncertainties were 2 % and 0.3 %, respectively.

An Experimental Study on Droplet Size Characteristics of Liquid Jets in Subsonic Crossflow (수직분사제트에서 액적크기특성에 대한 실험적 연구)

  • Kim, Min-Ki;Song, Jin-Kwan;Kim, Jin-Ki;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.59-63
    • /
    • 2006
  • A direct photograph measurement technique was used to determine the spatial distribution of the spray droplet diameter in subsonic crossflow and it also obtain that SMD distribution by using PLLIF technique. The injector internal flow was classified as three modes such as a normal, cavitation, and hydraulic flip. The objectives of this research are getting a droplet distribution and drop size measurement of normal flow and compare with the other flow effects. Although the study showed visually that drop size were spatially dependent of Air-stream velocity, fuel injection velocity, and normalized distance from the injector exit length.(x/d, y/d) There are also difference characteristics between cavitation, hydraulic flip and the normal flow.

  • PDF

A study on the flow characteristics in a MILD combustion waste incinerator with the change of flue gas recirculation inlet location (MILD 연소 폐기물 소각로에서 배기가스 재순환 흡입구 위치에 따른 유동 특성 연구)

  • Ha, Ji Soo;Shim, Sung Hun;Jung, Eung Ho
    • Journal of Energy Engineering
    • /
    • v.23 no.3
    • /
    • pp.51-57
    • /
    • 2014
  • A MILD(Moderate and Intense Low oxygen Dilution) combustion, which is effective in the reduction of NOx, is considerably affected by the recirculation flow position of hot exhaust gas to the combustion furnace. A numerical analysis was accomplished to elucidate the flow characteristics in the MILD combustion incinerator for several cases with or without exhaust gas recirculation. It could be seen from the result of the present numerical study that the flow recirculation could be observed in the upper region over the vertical dividing wall for the case without exhaust gas recirculation. The optimal position of exhaust gas recirculation position was derived by the comparison of %RMS of x directional velocity for the cases with exhaust gas recirculation. The case with the exhaust gas recirculation position at the upper right of free board was the most effective with the smallest value of 57.4% RMS.