• Title/Summary/Keyword: 유니티 ML

Search Result 5, Processing Time 0.015 seconds

Implementation of Intelligent Agent Based on Reinforcement Learning Using Unity ML-Agents (유니티 ML-Agents를 이용한 강화 학습 기반의 지능형 에이전트 구현)

  • Young-Ho Lee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.2
    • /
    • pp.205-211
    • /
    • 2024
  • The purpose of this study is to implement an agent that intelligently performs tracking and movement through reinforcement learning using the Unity and ML-Agents. In this study, we conducted an experiment to compare the learning performance between training one agent in a single learning simulation environment and parallel training of several agents simultaneously in a multi-learning simulation environment. From the experimental results, we could be confirmed that the parallel training method is about 4.9 times faster than the single training method in terms of learning speed, and more stable and effective learning occurs in terms of learning stability.

Design and Implementation of Reinforcement Learning Agent Using PPO Algorithim for Match 3 Gameplay (매치 3 게임 플레이를 위한 PPO 알고리즘을 이용한 강화학습 에이전트의 설계 및 구현)

  • Park, Dae-Geun;Lee, Wan-Bok
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.3
    • /
    • pp.1-6
    • /
    • 2021
  • Most of the match-3 puzzle games supports automatic play using the MCTS algorithm. However, implementing reinforcement learning agents is not an easy job because it requires both the knowledge of machine learning and the way of complex interactions within the development environment. This study proposes a method in which we can easily design reinforcement learning agents and implement game play agents by applying PPO(Proximal Policy Optimization) algorithms. And we could identify the performance was increased about 44% than the conventional method. The tools we used are the Unity 3D game engine and Unity ML SDK. The experimental result shows that agents became to learn game rules and make better strategic decisions as experiments go on. On average, the puzzle gameplay agents implemented in this study played puzzle games better than normal people. It is expected that the designed agent could be used to speed up the game level design process.

Designing a Reinforcement Learning-Based 3D Object Reconstruction Data Acquisition Simulation (강화학습 기반 3D 객체복원 데이터 획득 시뮬레이션 설계)

  • Young-Hoon Jin
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.6
    • /
    • pp.11-16
    • /
    • 2023
  • The technology of 3D reconstruction, primarily relying on point cloud data, is essential for digitizing objects or spaces. This paper aims to utilize reinforcement learning to achieve the acquisition of point clouds in a given environment. To accomplish this, a simulation environment is constructed using Unity, and reinforcement learning is implemented using the Unity package known as ML-Agents. The process of point cloud acquisition involves initially setting a goal and calculating a traversable path around the goal. The traversal path is segmented at regular intervals, with rewards assigned at each step. To prevent the agent from deviating from the path, rewards are increased. Additionally, rewards are granted each time the agent fixates on the goal during traversal, facilitating the learning of optimal points for point cloud acquisition at each traversal step. Experimental results demonstrate that despite the variability in traversal paths, the approach enables the acquisition of relatively accurate point clouds.

Design of track path-finding simulation using Unity ML Agents

  • In-Chul Han;Jin-Woong Kim;Soo Kyun Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.2
    • /
    • pp.61-66
    • /
    • 2024
  • This paper aims to design a simulation for path-finding of objects in a simulation or game environment using reinforcement learning techniques. The main feature of this study is that the objects in the simulation are trained to avoid obstacles at random locations generated on a given track and to automatically explore path to get items. To implement the simulation, ML Agents provided by Unity Game Engine were used, and a learning policy based on PPO (Proximal Policy Optimization) was established to form a reinforcement learning environment. Through the reinforcement learning-based simulation designed in this study, we were able to confirm that the object moves on the track by avoiding obstacles and exploring path to acquire items as it learns, by analyzing the simulation results and learning result graph.

Build reinforcement learning AI process for cooperative play with users (사용자와의 협력 플레이를 위한 강화학습 인공지능 프로세스 구축)

  • Jung, Won-Joe
    • Journal of Korea Game Society
    • /
    • v.20 no.1
    • /
    • pp.57-66
    • /
    • 2020
  • The goal is to implement AI using reinforcement learning, which replaces the less favored Supporter in MOBA games. ML_Agent implements game rules, environment, observation information, rewards, and punishment. The experiment was divided into P and C group. Experiments were conducted to compare the cumulative compensation values and the number of deaths to draw conclusions. In group C, the mean cumulative compensation value was 3.3 higher than that in group P, and the total mean number of deaths was 3.15 lower. performed cooperative play to minimize death and maximize rewards was confirmed.