• 제목/요약/키워드: 유기 발광소자

검색결과 491건 처리시간 0.024초

유기발광 소자의 수송층 두께 변화에 따른 발광효율 연구 (Study of OLED luminescence efficiency by Hole Transport layer change)

  • 이정호
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 하계학술대회 논문집 Vol.5 No.2
    • /
    • pp.1002-1006
    • /
    • 2004
  • The studies on OLED(Organic Light-Emitting Diode) materials and structures have been researched in other to improve luminescence efficiency of OLED. Electrons and holes are injected into the devices, transported across the layer and recombine to form excitons, their profiles are sensitive to mobility velocity of electrons and holes. A suggested means of improving the efficiency of LEDs would be to balance the injection of electrons and holes into light emission layer of the device. In this paper, we demonstrate the difference of velocity between hole and electron by experiments, and compare with a data of simulation and experiment changing hole carrier transport layer thickness, so we get the optimal we improve luminescence efficiency. We improve understanding of the various luminescence efficiency through experiments and numerical analysis of luminescence efficiency in the hole carrier transport layer's thicknes.

  • PDF

$Alq_3$의 증착속도에 따른 유기발광소자의 발광특성 (Luminous Properties in Organic Light-Emitting Diodes Depending on the deposition rate of $Alq_3$)

  • 김원종;이영환;양재훈;심낙순;김태완;홍진웅
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.154-156
    • /
    • 2005
  • In the device structure of ITO/tris (8-hydroxyquinoline) aluminum(Alq3)/Al, we investigated the Organic Light-Emitting Diodes (OLEDs) properties as a function of the deposition rate of the $Alq_3$. The deposition rate was from 0.5 to 2.0 $[{\AA}/s]$ in a base pressure of $5{\times}10^{-6}$ [Torr]. It was found that a $Alq_3$ deposition rate of around 1.5 $[{\AA}/s]$ is the optimum for the maximum luminous properties. The optimum deposition rate of $Alq_3$ is 1.5 $[{\AA}/s]$.

  • PDF

side by side 방법으로 제작한 matrix 유기 발광 소자의 발광특성 (Characteristics of matrix OEL devices that fabricated by side-by-side methode)

  • 손철호;여철호;신경;이영종;정홍배
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집 Vol.14 No.1
    • /
    • pp.366-369
    • /
    • 2001
  • In this study, the matrix Organic Electroluminescence (OEL) device, that was consisted of R,G,B pixels. We fabricated OEL devices by side by side methode and, used organic material Alq3 as green, DCM as red and Butyl PBD as blue ETL. We investigated the characteristic of brightness and current density for matrix OEL device. As the results, each color devices has minimum about $100cd/m^{2}$ brightness and maximum luminescence was $2500cd/m^2$ in green OEL device.

  • PDF

side by side 방법으로 제작한 matrix 유기 발광 소자의 발광특성 (Characteristics of matrix OEL devices that fabricated by side-by-side methode)

  • 손철호;여철호;신경;이영종;정홍배
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집
    • /
    • pp.366-369
    • /
    • 2001
  • In this study, the matrix Organic Electroluminescence (OEL) device, that was consisted of R,G,B pixels. We fabricated OEL devices by side by side methode and, used organic material Alq3 as green, DCM as red and Butyl PBD as blue ETL. We investigated the characteristic of brightness and current density for matrix OEL device. As the results, each color devices has minimum about 100 cd/㎡ brightness and maximum luminescence was 2500cd/㎡ in green OEL device

  • PDF

다층 박막을 이용한 적색 유기 전기발광 소자의 제작 및 발광 특성 연구 (Preparation and Characteristics of Red Organic Electroluminescent Devices Using Multilayer Structure)

  • 황장환;김영관;손병청
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1997년도 추계학술대회 논문집
    • /
    • pp.525-528
    • /
    • 1997
  • In this study, Eu(TTA)$_3$(phen) was synthesized and its films were prepared by vapor deposition method. Its films were characterized by UV-Vis absorption spectroscopy, Atomic Force Microscopy(AFM) and Photoluminescence(PL) measurements. Their electroluminescent(EL) characteristics were investigated by PL measurements, where a cell structure of glass substrate/ITO/Eu(TTA)$_3$(phen)/Al was employed. It was found that its films were well prepared without any decomposition and the film thickness could be controlled by adjusting the amount of Eu(TTA)$_3$(phen) in a boat. The EL spectrum of these films was almost the same as that of PL spectrum of these films.

  • PDF

유기발광소자의 전면 발광 특성 (TOP-EMISSION CHARACTERISTICS OF ORGANIC LIGHT-EMITTING DIODES)

  • 신은철;박일흥;이호식;조성오;민항기;김태완
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.58-59
    • /
    • 2007
  • We have fabricated top-emission. organic ligth-emitting diodes in a structure of Glass/Al/2-TNATA/TPD/$Alq_3$/LiF/Al/Ag. By varying a film thickness of 2-TNATA and TPD, current efficiency, luminance efficiency, and viewing angle dependence of the device were measured. The top device using $Alq_3$ showed electroluminescent peak wavelengths of 522nm and 505nm at $0^{\circ}$ and $60^{\circ}$ viewing angles, respectively. It is thought that a microcavity effect affects on peak wavelength position for different viewing angles.

  • PDF

정공 주입층 Copper(II)-phthalocyanine의 결정 변화에 따른 유기발광소자의 발광특성연구 (EL Properties of OLEDs with Different Crystal Structures of Hole Injection Layers of Copper(II)-phthalocyanine)

  • 임은주;이기진;한우미;이정윤;차덕준;이용산;김진태
    • 한국전기전자재료학회논문지
    • /
    • 제16권2호
    • /
    • pp.113-119
    • /
    • 2003
  • We report the electrical properties of copper(II)-phthalocyanine(Cu-Pc) as a hole injaction layer in organic light-emitting diode (OLED). OLEDs were constructed by the following material structure : indium tin oxaide (ITO)/ CuPc/ triphenyl-diamine (TPD)/ tris-(8-hydroxyquinoline)aluminum (Alq3)/4-(Dicyanomethlene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM)/ Al. we observed that the change of recombination zone by using a DCM detection thin layer (6 ${\AA}$) in a Alq$_3$ emitting layer. layer. Recombination zone was moved toward the cathode as the hole mobility increased due to the heat-treatment temperature of cupc layer increased.

새로운 형광 및 인광 물질을 이용한 효율적인 백색 유기 전기 발광소자 (Efficient White Organic Light-Emitting Diodes with Novel Fluorescent and Phosphorescent Materials)

  • 서지훈;김준호;이금희;윤승수;김영관
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 하계학술대회 논문집 Vol.7
    • /
    • pp.493-494
    • /
    • 2006
  • We have demonstrated highly efficient WOLED with two separated emissive layers using a blue fluorescent dye and a red phosphorescent dye. we also obtain stable $CIE_{x,y}$ coordinates with two-layered WOLEDs. The device structure was ITO/2-TNATA/NPB/two separated emissive layers/Bphen/Liq/Al. The maximum luminous efficiency of the device was 11.6 cd/A at $20\;mA/cm^2$ and $CIE_{x,y}$ coordinates varied from (x = 0.33, y = 0.37) at 6V to (x = 0.28, y = 0.35) at 14V.

  • PDF

유기전기발광소자에 사용될 수 있는 백금 착물에 대해 보조리간드 phenyl 기가 발광스펙트럼에 미치는 영향 (Effect of Ancillary Ligand, Phenyl group, on the Emission Spectrum of Pt(II) Complex Useful for Organic Light-Emitting Device)

  • 이승희;이호준
    • 한국응용과학기술학회지
    • /
    • 제25권2호
    • /
    • pp.265-268
    • /
    • 2008
  • Among the efforts to increase the efficiency of organic light-emitting device (OLED), there is a way: doping phosphorescent materials. As a phosphorescent material, complexes of heavy transition metal, platinum, were synthesized. $Cl^-$ ion and phenyl group were used as ancillary ligands with 2-(2-pyridyl)benzimidazole (pbi) as a chromophore. The complexes were analysed by FAB-mass spectrometer and absorption and emission spectra were obtained. A phenyl group was able to shift the emission band of the complex even if it's not a chromorphore.

유기발광 소자의 전자 주입층 두께 변화에 따른 발광효율 연구 (Study of OLED luminescence efficiency by electron Injection layer change)

  • 이정호
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 추계학술대회 논문집 Vol.17
    • /
    • pp.555-558
    • /
    • 2004
  • The efficiency of electron injection from the cathode is strongly dependent on the thickness of the LiF buffer-layer. We used LiF to electron Injection layer. We compared characteristics of organic light emitting device changing LiF thin film thickness from 1.0 m to 10.0 nm. Experiment result, we found that LiF thickness has the optimized electrical characteristics in 3.0 m. In this paper, we did research about electrical characteristics of organic light emitting device by LiF thickness change using method numerical analysis method. We proved adequate experimental results that compare results of numerical analysis, and come out through an experiment results is validity.

  • PDF