• Title/Summary/Keyword: 유기물 퇴비

Search Result 499, Processing Time 0.036 seconds

Effect of Planting Density on the Growth Characteristics and Root Yield of Achyranthes japonica N. (쇠무릎의 재식밀도(栽植密度)가 생육특성(生育特性) 및 근(根) 수량(收量)에 미치는 영향(影響))

  • Kim, Myeong-Seok;Chung, Byeong-Jun;Park, Gyu-Chul;Park, Tae-Dong;Kim, Sang-Chul;Shim, Jae-Han
    • Korean Journal of Medicinal Crop Science
    • /
    • v.6 no.2
    • /
    • pp.137-141
    • /
    • 1998
  • This experiment was conducted to investigate the effects of planting density on the growth characteristics and root yield of Achyranthes japonica N. from 1995 to 1996. Stem diameter, no. of branch and fresh weight of above-ground parts per plant were reduced by increasing the planting density, but stem length, length and diameter of main root increased at high density, $25{\times}5cm$. The heighest percent of large roots was 71 % at $25{\times}5cm$ planting density. The dry root yield per 10a at $25{\times}5cm$ planting density was 7% higher than 306kg of $20{\times}5cm$ planting density, but root yields were lower in other planting density compared to $25{\times}5cm$ planting density. The root dry weight showed negative correlation with stem diameter, no. of branch and fresh weight of above-ground parts per plant but showed positive correlation with stem length, length and diameter of main root.

  • PDF

Status and Changes in Chemical Properties of Paddy Soil in Korea (우리나라 논토양의 화학성 현황과 변동)

  • Kang, Seong-Soo;Roh, Ahn-Sung;Choi, Seung-Chul;Kim, Young-Sang;Kim, Hyun-Ju;Choi, Moon-Tae;Ahn, Byung-Koo;Kim, Hyun-Woo;Kim, Hee-Kwon;Park, Jun-Hong;Lee, Young-Han;Yang, Sang-Ho;Ryu, Jong-Soo;Jang, Young-Sun;Kim, Myeong-Sook;Sonn, Yeon-Kyu;Lee, Chang-Hoon;Ha, Sang-Gun;Lee, Deok-Bae;Kim, Yoo-Hak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.968-972
    • /
    • 2012
  • Soil chemical properties of agricultural soils in Korea were investigated at four-years interval in order of paddy, plastic film house, upland, and orchard soils since 1999. Paddy soil samples were taken from the surface 15 cm at 4,047, 2,010, 2,110 and 2,110 sites in all provinces of South Korea in 1999, 2003, 2007 and 2010, respectively. Soil chemical properties in Korea except Jeju province were measured. Soil pH and exchangeable calcium and available silicate contents increased with increasing the application rate of silicate fertilizer and with decreasing its application interval. Soil organic matter content also increased from $22.0g\;kg^{-1}$ in 1999 to $26.0g\;kg^{-1}$ in 2011. Average concentration of available phosphate in 2011 was higher than the upper limit of its optimal range for rice cultivation. However, exchangeable magnesium and available silicate contents were below the lower limit of their optimal ranges, which were 80% and 92% of them, respectively.

Vermicomposting Condition and Safety/Fertility of Earthworm Casts (지렁이를 이용한 퇴비화 조건과 분변토의 비료성·안전성에 관한 연구)

  • Song, Jun-Sang;Lee, Kil-Chul;Chun, Sung-Hwan;Choi, Hun-Keun;Cho, Kyung-Hee;Kim, Sun-il
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.1 no.1
    • /
    • pp.85-102
    • /
    • 1993
  • This study was conducted to achieve develop organic sludge recycling technology as sludge make a prey of earthworm. Therefore sludge treatment and recycling technology is an important field by which this research project to solve landfill site and reduction treatment expense using vermicomposting treatment process on the waste sludge from the biological wastewater treatment plant. In experimental results on the optimum conditions of vermicomposting of nightsoil treatment sludge, survival rates were observed 98.3% in temperature of $10-15^{\circ}C$, 75% in pH 5.8-7.5 and 100% in density of $1/79.8cm^3$, respectively. Liveweight changes of earthworm were increased 266% in temperature of $10-15^{\circ}C$, 227% in pH 5.8-7.5 and 325 % in density $1\;cap./79.8cm^3$, respectively. Casting production rate were generated 0.06 g/cap./day in temperature $20-25^{\circ}C$, 0.065 g/cap./day in pH 5.8-7.5 and 0.1 g/cap./day in density $1\;cap./79.8cm^3$, respectively. Cocoon production numbers were observed 3.8 ea. /cap.in $10-15^{\circ}C$, 2.95 ea./cap.in pH 5.8-7.5 and 3.16 ea./cap. in $1\;cap./79.8cm^3$ during 6 weeks, respectively. pH was droped by 6.2 to 5.7, volatile solids was decreased by 2.9%, $NH_3-N$ were also reduced by $6.984{\mu}g/g$ to $0.991{\mu}g/g$. $NO_3-N$, however, were increased by $3.213{\mu}g/g$ to $7.706{\mu}g/g$. Fecal coliforms and pathogenic bacteria are analyzed by microbiological method to assess public health safety of casting. Number of fecal coliform groups were reduced 88.6-99.1% (Avg. 95.7%) approximately. And pathogenic bacteria such as Salmonella, Shiegella and Vibrio, were not isolated from the earthworm cast.

  • PDF

Study on Characteristics of Chemical Properties and Microbial Flora of Organic Farming Soil in Korea (유기농 토양의 화학적 특성 및 미생물상 연구)

  • Park, Kwang-Lai;Suga, Yuko;Hong, Seung-Gil;Lee, Chorong;Ahn, Minsil;Kim, Seok-Cheol;Hashimoto, Tomoyoshi
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.24 no.4
    • /
    • pp.77-83
    • /
    • 2016
  • The objectives of this study was to investigate the difference between organic-farming and conventional-farming soils relatives to soil chemical properties and microbial flora. Fifteen soil sampling sites were chosen from the certified organic upland farm, considered with its location, crop and application of organic compost types. Soil chemical properties were analyzed by standard methods established by National Institute of Agricultural Sciences, Rural Development Administration. For the soil chemical properties, the values of pH were ranged from 4.5 to 7.3. The values of electrical conductivity (EC) in the sampling sites were below 2 dS/m of convention cultivation soil. For analyzing the microbial flora, the bacillus(16S rDNA) and cladothricosis(18S rDNA) were analyzed by using PCR-DGGE (Denaturing Gradient Gel Electrophoresis) in the soil of 15 sampling sites. Cluster analysis of biodiversity index was performed by using pattern of DGGE. DGGE patterns and clustering analysis of bacterial DNA from soil extracts revealed that the bacterial community was differentiated between less than 5 years and more than 5 years depending on the cultivation history. But there was no consistent tendency between cultivation history and regional trend in the case of molds. Therefore, it would be very effective to analyze bacterial clusters of organically cultivated soils in long - term cultivated soil for more than 5 years.

Effect of Biodegradable Waste Particle Size on Aerobic Stabilization Reactions in MBT System (생분해성 폐기물 입경이 MBT시스템과 연계된 호기성안정화반응에 미치는 영향)

  • Kwon, Sang-Hagk;Ban, Jong-Sub;Kim, Su-Jin;Phae, Chae-Gun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.7
    • /
    • pp.523-529
    • /
    • 2011
  • This study has been performed to examine the influence of the size of particles on the stabilization in the aerobic stabilization equipment connected with MBT system. The biodegradable waste inside the reactor (60% of food waste, 25% of paper waste, 2% of wood waste and 5% of compost) has been charged in same composition. The degree of stabilization was compared and analyzed after charging with adjustment of particle size in 5 mm, 10 mm, 20 mm, 50 mm, 100 mm and state of no separation. The experiment revealed that highest temperature beyond $65^{\circ}C$ was shown in the particle size of less than 50 mm in change of temperature and the highest temperature was about $50^{\circ}C$ in reactor of 100 mm and no separation. The proportionality between generated quantity of $CO_2$ and particle size was not observed, even the highest in generated quantity was shown in over 100 mm. The weight changes based on wet and dry conditions in the reaction process showed the 30% and 46% of reduction in the smallest particle size of 5 mm and it showed the trend of the lower reduction rate at the bigger particle size. The water soluble $COD_{Cr}$ and TOC showed the reduction rate of 60% in reactor of particle size in 100 mm and no separation while the reduction rate comparing to the initial stage of reaction in the reactor of less than 50 mm was 80%. Such result derived the conclusion of acceleration in the decomposing stabilization of biodegradable material due to the decomposing rate of organic substance as the particle size of biodegradable waste gets smaller. It is concluded as necessary to react in adjustment under 50 mm of particle size as much as possible.

Livestock Manure Nutrients Flow Analysis of Integrated Crop-Livestock Farming Model Reflecting the Regional Characteristics (지역특성을 고려한 경축순환농업 모형의 가축분뇨 양분 흐름분석)

  • Lee, Joon Hee;Choi, Hong Lim
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.23 no.2
    • /
    • pp.36-46
    • /
    • 2015
  • Integration of crop-livestock farming has been a problem-solving mode for abatement of environmental pollution and recovery of resources in recent years. The objectives of this study were 1) to suggest the customized integration of crop-livestock farming model reflecting the regional characteristics through in-depth analysis of case study and 2) to analyze the livestock nutrients flow in terms of three primary elements as nitrogen(N), phosphorous(P), and potassium(K). The personal interview and survey were carried out in 2012 for a total of 161 farms from four different regions(NS, NW, JJ, YC) in South Korea. The mass balance analysis was used to suggest and evaluate the models for two sites(JJ and YC). The results showed that NS and NW sites produced relatively more livestock manure than the sites of YC and JJ because of the regional differences in livestock numbers and urbanization. The models were suggested for the site JJ and site YC, and 'two track model(energy and resource recovery)' and 'dispersal type model' were assigned respectively. For the nutrient flows, the releasing P and K with new models had increased up to 7%, while N release had decreased down to 15% in both YC and JJ sites compared to the present treatment system. Estimated value showed that there was oversupply of N (719 ton/yr) and $P_2O_5$ (1,269 ton/yr) in YC and deficiency of N (671 ton/yr) and excessive $P_2O_5$ (32 ton/yr) in JJ respectively. Therefore, P runoff has to be considered an eutrophication occurs in rural small stream when an integration of crop-livestock farm system is applied into both sites.

Impact of the Rice-Duck Farming System on Regional Agricultural Environment at Hongsung Area (오리농법에 의한 벼 재배가 지역 환경에 미치는 영향 평가)

  • Roh, Kee-An;Kim, Min-Kyeong;Ko, Byong-Gu;Kim, Gun-Yeob;Shim, Kyo-Moon;Jeong, Hyun-Cheol;Lee, Deog-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.spc
    • /
    • pp.57-61
    • /
    • 2009
  • To clarify the impact of the rice-duck farming system on the regional environment and the surrounding, a case study was carried out at Hongdong Reservoir valley of Hongdong-myeon and Janggok-myeon, Hongseong-gun, Chungcheongnam-do where the density of livestock grazing is the highest and rice cultivation with the rice-duck farming system is extensively practiced. The soil characteristics and water qualities at paddy fields were compared between two rice cultivation methods of rice-duck farming system and conventional farming system. The organic matters and available phosphate contents in soil of paddy fields where the rice-duck farming system was practiced were higher than those of paddy fields where conventional farming system was practiced. However, the available phosphate content was lower than the optimum for rice cultivation and the mean concentration of paddy soil in Korea. The surface water quality of the paddy field with the rice-duck farming system was practiced had higher EC (137 %), $COD_{Cr}$ (220 %), T-N (172 %), and T-P (226 %) contents than that with the conventional farming system was practiced. Especially, $COD_{Cr}$ and T-P were more than 2 times higher, which tells that the possibility of water pollution by drainage water of paddy field is higher in the paddy fields with the rice-duck farming system practiced than in those with the conventional farming practiced. The higher contents of T-P and $COD_{Cr}$ in surface water at the paddy field of rice-duck farming system practiced were directly caused by soil particles in the muddy water. Consequently, it is necessary to thoroughly manage the irrigation and drainage system of rice-duck farming system practiced to prevent outflow of surface water from paddy and pollution of surrounding water system.

Study on new casing materials of Agaricus bisporus (양송이의 새로운 복토재료에 관한 연구)

  • Kim, Yong-Gyun;Lee, Byung-Joo;Lee, Sun-Gye;Lee, Byung-Eui
    • Journal of Mushroom
    • /
    • v.16 no.3
    • /
    • pp.147-154
    • /
    • 2018
  • This study was aimed to improve the productivity and income of mushroom farming by developing a new casing material as a substitute for clay loam casing soil, which is becoming more difficult to acquire. When the new casing materials were used for the stable production of button mushroom (Agaricus bisporus), a 1:1 mixture of clay loam and button mushroom media obtained after harvest supported 13% greater mycelial growth ($32.0kg/3.3m^2$). This material was better than clay loam soil in preventing contamination with environmental compounds and pests. The use of an inexpensive 1:1 mixture of peat moss and coco peat resulted superior mycelial growth with 4% better yield ($32.9kg/3.3m^2$) compared with conventional clay loam soil. Advantages of these casing materials included ready availability and improved productivity. Mixtures of peat moss + coco peat + zeolite (50%:30%:20%) and coco peat + coal ash (75%:25%) could substitute for conventional casing soil. Additionally, the novel mixtures containing material obtained after cultivation might be used to produce organic fertilizer.

Performance Evaluation of Bio-Membrane Hybrid Process for Treatment of Food Waste Leachate (음식물 침출수 청정화를 위한 파일롯 규모의 생물-분리막 복합공정의 성능 평가 연구)

  • Lee, Myung-Gu;Park, Chul-Hwan;Lee, Do-Hoon;Kim, Tak-Hyun;Lee, Byung-Hwan;Lee, Jin-Won;Kim, Sang-Yong
    • KSBB Journal
    • /
    • v.23 no.1
    • /
    • pp.90-95
    • /
    • 2008
  • In this study, a combined process of sequential anaerobic-aerobic digestion (SAAD), fluidized-bed bioreactor (FBBR), and ultrafiltration (UF) for the treatment of small scale food waste leachate was developed and evaluated. The SAAD process was tested for performance and stability by subjecting leachate from food waste to a two-phase anaerobic digestion. The main process used FBBR composed of aerators for oxygen supply and fluidization, three 5 ton reaction chambers containing an aerobic mesophilic microorganism immobilized in PE (polyethylene), and a sedimentation chamber. The HRTs (hydraulic retention time) of the combined SAAD-FBBR-UF process were 30, 7, and 1 day, and the operation temperature was set to the optimal one for microbial growth. The pilot process maintained its performance even when the CODcr of input leachate fluctuated largely. During the operation, average CODcr, TKN, TP, and salt of the effluent were 1,207mg/L, 100mg/L, 50 mg/L, and 0.01 %, which corresponded to the removal efficiencies of 99.4%, 98.6%, 89.6%, and 98.5%, respectively. These results show that the developed process is able to manage high concentration leachate from food waste and remove CODcr, TKN, TP, and salt effectively.

A Study on the Lime Stabilization of Livestock Waste (축산폐기물의 안정화 처리에 대한 연구)

  • Kim, Hyun-Chul;Choi, Yong-Su
    • Analytical Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.91-99
    • /
    • 1995
  • One of alternative conventional technologies used for treatment of livestock wastes is composting process, and recently some mechanical composting processes are being practiced. It is, however, recognized the composting process also has its own limitations such as longer time requirement, and difficulties to estimate the degree of decomposition, etc. The incomplete compost contains potentially harmful materials to crops and public health due to instabilized organic contents and pathogenic organisms. The purpose of this investigation is to develop an innovative system whereby anxious livestock wastes are thoroughly stabilized and disinfected. Thus the overall management scheme should meet the following requirements. 1. A system should be in a cost-effective and environmentally sound manner. 2. Sludges must be chemically stabilized and bacteriologically safe. 3. Odor-free by product should be applied to crop land. 4. Sludges are sources of fertilizer nutrients and/or soil amendments to enhance crop production. 5. And they can be used as potential pH adjusting agent of the acidified soils. Overall effectiveness of the developed system is experimentally tested to satisfy the preset criteria and requirements. Major experiments are divided into four categories: they are 1. chemical stability test, 2. optimal condition test of stabilization process, 3. bacteriological examination and disinfection tests, and 4. deodorization tests The stabilization process is consisted of the stabilizing reaction process and the drying process. Stabilized wastes is dried by both sun dryer and rotary dryer. It is shown that an additive dosage of about g/kg solid in wastes with a minimum of 5-minutes reaction would be necessary for effective stabilization reaction. The stabilization process is consisted of the stabilizing reaction process and drying process. Stabilized wastes are dried by both sun dryer and rotary dryer. It is shown that an additive dosage of about 300g/kg solid in wastes with a minimum of 5-minutes reaction would be necessary for effective stabilization reaction. In the stabilization reaction process, the pH of wastes is lowered from initial values of 12.3 to 8.6. High pH prevents odor production and kills pathogenic organisms. Organic matter contents in the stabilized wastes are about 50% and the sum of contents of fertilizer elements such as total nitrogen, $P_2O_5$ and $K_2O$ are about 5.3%. The livestock wastes that are stabilized chemically and hygienically can be used as a good soil conditioner and/or organic fertilizer.

  • PDF