• 제목/요약/키워드: 유기물 감량

Search Result 88, Processing Time 0.022 seconds

On the Distribution of Organic Matter in the Nearshore Surface Sediment of Korea (한국연안 표층퇴적물중의 유기물함량 분포특성)

  • KANG Chang-Keun;LEE Pil-Yong;PARK Joo-Suck;KIM Pyoung-Joong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.26 no.6
    • /
    • pp.557-566
    • /
    • 1993
  • For the purpose of examining the distribution of organic matter in the nearshore surface sediments of Korea, organic carbon, nitrogen, ignition loss, chemical oxygen demand, phaeopigment and total sulphide for 117 surface sediments were measured and analyzed in February, 1993. Organic carbon and nitrogen contents ranged from $0.03\%\;to\;5.41\%$ (average $1.08\%$) and from $0.01\%\;to\;0.44\%$ (average $0.18\%$), respectively. The highest contents with the average $2.18\%$ organic carbon and $0.23\%$ nitrogen were found in the eastern part of the southern coast, while the lowest contents with the average $0.17\%$ organic carbon and $0.03\%$ nitrogen in Kunsan coastal area covering from Kum river to Dongjin river. The principal component analysis using all measured data distinguished the western coast from the eastern part of the southern coast clearly according to organic matter contents, that is, the degree of eutrophication in the sediments. Pusan harbor and the mouth of Masan Bay had high C/N ratio that might be resulted from the input of terrestrial sewage and industrial wastewater. A high concentration of total sulphide distinguished the surface sediment of Masan Bay from that of other areas.

  • PDF

A study on the characteristics of pollutants on bottom sediments in Shin-Gal Reservoir (신갈호 저층 퇴적물에 대한 오염물질 특성에 관한 연구)

  • Ahn, Tae-Woong;Kim, Tae-Hoon;Lee, Sang-Eun;Kim, Sang-Hyeon;Choi, I-Song;Oh, Jong-Min
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.202-206
    • /
    • 2011
  • 본 연구에서는 정체성 수역인 신갈호를 대상으로 저층 퇴적물의 오염물질에 대한 조사를 실시 하였다. 신갈호 저층 퇴적물의 분석 결과, 함수율의 범위는 49.0~68.2%로 조사되었으며, 평균 함수율은 60.8%로 나타났다. 함수비의 경우에는 지점별 96.1~214.6%의 넓은 범위를 보였으며 평균 함수비는 165.8%로 조사되었다. 퇴적물의 pH는 모든 지점에서 산성을 띄었으며, 하류부로 갈수록 더욱 낮아지는 경향을 보였다. 입도분석 결과, 토성은 SL(사양토) 및 SiL(실트질양토)로 나타났으며, 이러한 토성분포는 입자별 침강속도에 의한 것으로 퇴적물의 지점별 이 화학적 특성에 많은 영향을 줄 것으로 판단된다. 유기물 함량 분석결과, 강열감량의 경우 8.22~11.36%로 평균 10.22% 의 유기물 함량을 보였으며, COD는 24,92 mg/kg~27,38 mg/kg의 값으로 평균 26,16 mg/kg로 조사되었다. 영양물질 함량 분석결과, T-N의 경우 신갈호 저층 퇴적물 평균 2,916 mg/kg의 질소 함량을 보였으며, T-P의는 평균 710 mg/kg로 조사되었다. 영양물질 함량 분석결과 하류부로 갈수록 높아지는 경향을 보였으나 총질소의 경우 지점별 비슷한 값을 보인 반면, 총인은 지점별 큰 차이를 보였다. 퇴적물의 중금속 함량은 Cd, Cu, Zn, $Cr^{6+}$, Pb을 분석하였으며, Cd 0.10~0.12 mg/kg, Cu 18.33~20.67 mg/kg, Zn 82.73~110.15 mg/kg, $Cr^{6+}$ 0.78~0.93 mg/kg Pb 11.04~14.53 mg/kg의 범위를 보였으며, 지점별로 큰 차이를 보이지 않았다. 본 연구의 자료는 신갈호 유역의 개발계획 및 준설 검토에 대한 유용한 자료로 활용 가능할 것으로 판단된다.

  • PDF

Slurry Phase Decomposition of Food Waste by Using Various Microorganisms (미생물을 이용한 액상소멸방식의 음식물쓰레기 처리)

  • Kwon, Bum Gun;Na, Suk-Hyun;Lim, Hye-Jung;Lim, Chae-Sung;Chung, Seon-Yong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.5
    • /
    • pp.303-310
    • /
    • 2014
  • This study investigated the reduction of food waste through the slurry phase decomposition in a source of food waste by microorganisms. The reactor used in the experiment was composed of both woodchip with wood material and sponges with polyurethane material as media of attached microorganisms, and food waste was mixed with a constant cycle consisted of a stirring device. During the experimental period of 100 days, the change in weight over the cumulative total amount of food waste added was reduced by 99%. Approximately, 1% of the residual food waste could be inherently recalcitrant materials (cellulose, hemicellulose, lignin, etc.) and thus was thought to be the result of the accumulation. The initial pH in wastewater generated from food waste was low with 3.3 and after 24 hours treatment this pH was increased to 5.8. The concentrations of COD, BOD, SS, salinity, TN and TP were gradually decreased. Food waste decay was proceeded by the seven species microorganisms identified and confirmed in this study, making a slurry phase and thus reducing residual food wastes. In the initial phase, the microbial population was approximately $3.3{\times}10^4$ cell/mL, and after 15 days this population was a constant with $5.1{\times}10^6$ cell/mL which means a certain stabilization for the reduction of food wastes. From these results, it can be considered that organic matter decomposition as well as the weight loss of food wastes by microorganisms is done at the same time.

Study of Biodegradable Ability of Biodegradable Plastic in Anaerobic Digestion (혐기성소화에 의한 생분해성 플라스틱의 생분해능 검토)

  • Park, Jeong-Soo;Joo, Hung-Soo;Ryu, Jae-Young;Phae, Chae-Gun;Jeon, Young-Seung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.10 no.1
    • /
    • pp.109-119
    • /
    • 2002
  • This study is to estimate that food waste bags with biodegradable plastic are really decomposed by microorganism in composting with food waste and to examinate how biodegradable plastic affects composting. 6 kinds of 30%, 4 kinds of 100% and 2 kinds of none biodegradable plastics were used in d1is study. In 30% biodegradable plastics the highest Degradation rare is 6% in meso-condition and 10% in thermal-condition. Srain at auto break decreased to 150% in meso-condition and 120% in thermal-condition. Stress at max load were also reduced to $180kgf/cm^2$ in mesocondition and $200kgf/cm^2$ in thermal-condition. Usually, LLDPE decreased larger than HDPE in physical characreristics but HDPE is higher in degradation rate. 1n stain at auto break and stress ar max load 100% biodegradable plastic declined to 230% and to $380kgf/cm^2$ in meso-condition and to 440% and to $400/cm^2$ in thermal-condition respectively. 100% biodegradable plastics showed higher biodegradation and decomposition then 30%. They appeared clearly through SEM observation. As a result, it was not appropriate to use 30% biodegradable plastics as food waste bag because they were not decomposed perfectly. It is possible to use 100% biodegradable plastic as it but cost is too high. So development of technique is needed.

  • PDF

Feedstuff of Food Garbage by the Rapid Steam Drying (스팀 고속건조에 의한 음식물쓰레기의 사료화에 관한 연구)

  • Kim, Nam-cheon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.3 no.2
    • /
    • pp.69-78
    • /
    • 1995
  • When the food garbage of general hospital was dried by the rapid steam drying process, the water content was changed to 1.3% from 77.8~82.8%. In this experiment, weight reduction rate was 80%, and electricity consumption was 2.4Kwh. Dried compost from this rapid steam drying process was brown pellets, which was consist of 27.77% crude protein and 3.19% crude fiber. Even though these pellets were slightly short of crude fat and crude ash content, these were analysed as a possible supplementary feed for pig. On the condition of drying food garbage mixed with 5% pulverized chaff, the necessary drying time was shortened by 1 hour, weight reduction rate was 76%, and reduction rate of electricity consumption was 42%. But contents of crude fiber and crude ash were increased to about 2 times. In case of adding new food garbage continuously to the composted food garbage mixed with 3.4% pulverized chaff, weight reduction rate and contents of crude fiber and crude ash were decreased gradually, but contents of crude protein and crude fat were increased. In case of composting food garbage from buffet, both drying time and electricity consumption were reduced, and ingredients of compost were higher than that of assorted feed for pig in the market.

  • PDF

Treatment of Food Garbage Using a Treatment Reactor and Microbial Consortium (발효소멸기를 이용한 음식물 쓰레기의 감량 및 악취제거)

  • Koh, Rae-Hyun;Lee, Kang-Hyoung;Yoo, Jin-Soo;Song, Hong-Gyu
    • Korean Journal of Microbiology
    • /
    • v.42 no.4
    • /
    • pp.306-312
    • /
    • 2006
  • Disposal of food garbage in most large cities is very troublesome task. To date, microbiological treatment has been received an attention as a garbage decomposition process. In this study, the inoculation effect of some cellulase, amylase and protease-producing bacteria and photosynthetic bacteria on food garbage treatment was examined. They were added into a treatment reactor specially designed in this study together with food garbage and incubated in various conditions for 15 days and the removals of food garbage and foul smell produced during the treatment were analyzed. Average decomposition percentages of the inoculated food garbage in treatment reactor were 11 and 18.8% under intermittent aeration (once in a day) and continuous aeration conditions (2 L/min), respectively, and these were higher than removal percentages in the corresponding uninoculated reactors,3.4 and 13.8%. Optimal pH and temperature for food garbage decomposition by inoculated bacteria were pH 7.0 and $30^{\circ}C$. Maximal decomposition percentage in the inoculated food garbage was 35% under the optimal condition (pH 7, $30^{\circ}C$, and continuous aeration). The malodor compounds generated from food garbage treatment such as complex foul smell and sulfur compounds were effectively reduced about 84% and 25.5%, respectively, with a biofilter composed of purple nonsulfur bacteria trapped in sponge. This decomposing capability of food garbage by these bacteria can be utilized for the rapid and efficient treatment of food garbage.

A Study on Recycling of Food Garbage - For Compost - (음식물찌꺼기의 재활용에 관한 연구 - 퇴비화로서 -)

  • Kim, Nam-Cheon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.2 no.1
    • /
    • pp.51-64
    • /
    • 1994
  • To compost the food garbage with the dry bean curd and sawdust as the bulking agents, the method of high-speed fermentation by the characteristic microorganisms group was applied. The results of experiments are summarized as follows ; 1. Korean food garbage, which is high in water content, is difficult to compost only by microorganism fermentation without the addition of bulking agents such as dry bean curd cake and sawdust. 2. Weight reduction rates are ranging from 35.6% to 64.5% and varying with the composition of food garbage. The less weight reduction rate is, the longer continuous-fermentation is. And the color of compost is changing sequentially as yellow -> brown -> black. 3. Comparing with the controlled microorganism group, the weight reduction rate and $H_2CO_3$ production rate in the characteristic microorganism group fermentation reactors are higher. And the fermentation rate is satisfactory when the characteristic microorganism group is added. 4. The value of fermented composting as fertilizer diminishes, and the contents of Total Nitrogen, $P_2O_5$, $K_2O$ increase on the condition that the fermentation continues. However, the organic contents and C/N ratio diminish as the fermentation continues. 5. The high-speed fermentation technology demonstractes the possibility of recycling as well as the reduction of composting time provided that it is applied as a pretreatment process for composting.

  • PDF

Decomposition of Compost Bag Using Polyester Resin (폴리에스테르 수지를 이용한 콤포스트 백 분해에 관한 연구)

  • Lee, Keon Joo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.13 no.3
    • /
    • pp.97-104
    • /
    • 2005
  • In this study, the change of water content, pH, and combustion weight on the decomposition of poly ester vinyl and high density poly ethylene were examined. The poly ester vinyl was degraded by microorganism in food wastes for 30 days, while high density poly ethylene vinyl was not degraded. Also, the poly ester vinyl was rapidly degraded after the 10 days of operation and its weight was decreased. In the combustion reaction between $300^{\circ}C$ and $600^{\circ}C$, complete combustion was performed. Due to the degradation of poly ester vinyl by microorganism in food waste, the pH was increased from 4.26 to 7.6. During of 60 days operation, poly ester vinyl was degraded over 90%.

  • PDF

Study on the heavy metal stabilization by dosing of chelate on the bottom ash (소각재에서의 용출억제제를 이용한 중금속 안정화에 관한 연구)

  • Jang, Hyeon-Jong;Kim, Seong-Jung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.17 no.4
    • /
    • pp.81-90
    • /
    • 2009
  • About 35 domestic incinerators are being operated currently. There is waste management policy to reuse waste efficiently and reduce waste through incineration which include reuse, recycling and energy recovery. However, there is a critical social issue that some heavy metals(Cu, Pb) were found in bottom ash from incineration of waste. After incineration, bottom ash is treated with chemicals to prevent second pollution of heavy metals from bottom ash and increase efficiency of heavy metal stabilization.

Effect of Mixtures with Lignite and Amino Acid Solution on the Growth of Rice Plant, Chinese Cabbage and Red Pepper, and the Chemical Properties of Soil (갈탄과 아미노산액 혼합제 시용이 벼, 배추와 고추의 생육 및 토양의 화학적 특성에 미치는 영향)

  • Han, Seong-Soo;Yoo, Ki-Yong;Park, Min-Su;Lee, Young-Il;Baek, Seung-Hwa
    • Korean Journal of Environmental Agriculture
    • /
    • v.29 no.2
    • /
    • pp.93-101
    • /
    • 2010
  • For the study of possibility of practical use as an organic farm materials of the mixtures with lignite and amino acid solution, this experiment was carried out to investigate the effects of the mixtures on the growth and the yield of rice plant, chinese cabbage, and red pepper, and the effects of the mixtures on chemical properties of soil. Also, when the mixtures of the lignite plus amino acid solution and the chemical fertilizer were applied to these three crop cultivation area, authors want to know how can the loss in quantity of chemical fertilizer affects the growth and the yield of these crops. As the results, growth of rice plant applied with the mixtures of lignite and amino acid solution was better than that applied with the recommended rate of chemical fertilizer. Especially, the growth of rice plant appeared to be good at the treatment of 150 kg/ha of the mixed lignite with amino acid solution and at that of its mixtures and standard fertilization. Growth of chinese cabbage and red pepper was good at the application of 600 kg/ha of the mixed lignite with amino acid solution and at that of its mixtures and standard fertilization. Yield of rice and chinese cabbage was good at the treatment of 150 kg/ha of the mixed lignite with amino acid solution and at that of its mixtures and standard fertilization, and yield of red pepper was good at the application of 600 kg/ha of the mixed lignite with amino acid solution and at that of its mixtures and standard fertilization. The organic matter content increased and while the exchangeable cation decreased when the lignite mixed with amino acid solution and the loss in quantity of chemical fertilizer applied at paddy field. Incase of these treatments, pH and available phosphorus increase at upland field, but did not change at paddy field.