• Title/Summary/Keyword: 유기물화

Search Result 1,060, Processing Time 0.03 seconds

A Foamed Body through the Complexation with the Sepiolite and Expanded Pearlite (해포석과 팽창진주암의 복합화에 의한 발포체 제조)

  • Lee, Chul-Tae;Jang, Moonho;Park, Tae-Moon
    • Applied Chemistry for Engineering
    • /
    • v.23 no.1
    • /
    • pp.77-85
    • /
    • 2012
  • Production process of the flexible ceramic foamed body through the complexation with the fiberous sepiolite and expanded pearlite was researched. The processing of fibrillation of the inorganic mineral fiber sepiolite is the most important whole processing for manufacturing of the ceramic foamed body consisting of the expanded perlite and sepiolite. The fibrous sepiolite and expanded pearlite are blended and becomes the slurry phase. And this slurry phase is converted to a massive foamed body through the low temperature heat treatment process less than $300^{\circ}C$. The heat-treatment process of the slurry phase composite has to be designed to include the evaporation step of the moisture remaining among the slurry composition, foaming step by the decomposition of the foaming agent, and resolution removal step of the organic material which was added in the composite remained after the foaming step. The heat treatment process should be considered as significant factors in design of total process. As to the condition of heat treatment process and foaming agent, there was the a correlation. An organic type foaming agent like DSS (dioctyl sodium sulfosuccinte) was effective in foaming of the slurry compound consisting of the expanded perlite and sepiolite fiber.

Byproducts formation during hydrothermal pretreatment of spent mushroom substrate and effects onto biogas production efficiency (버섯 폐배지의 수열전처리 과정 중 중간산물 생성이 바이오가스 수율에 미치는 영향)

  • Jongkeun Lee;Daegi Kim
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.1
    • /
    • pp.27-34
    • /
    • 2023
  • In this study, spent mushroom substrate (SMS), which consits of lignocellulosic material, was pretreated by hydrothermal method; the changes of biodegradability and methane production yield of pretreated SMS were determined according to formation of lignocellulosic biomass degrading byproducts formation during thermal pretreatment. Based on the results, all hydrothermal pretreatment temperatures showed improved solubilization performance for biomass, and the optimum pretreatment effect was observed at an pretreatment temperature of 150℃ with the highest methane production yield. However, the induced formation of furan derivatives (i.e., 5-hydroxymethylfurfural and furfural) as byproducts during hydrolysis of hemicellulose and cellulose at severe condition lowered biodegradability and methane yield when the hydrothermal pretreatment temperature was higher than 180℃. Thus, this study revealed that hydrothermal pretreatment could promote anaerobic digestion efficiency of lignocellulosic biomass and is of great importance for preventing byproducts formation through pretreatment condition control.

Fertility status of Jeju volcanic ash soil and its improvement (제주도전토양(濟州道田土壤)의 비옥도현황(肥沃度現況)과 개량(改良))

  • Ryu, In Soo;Yoo, Sun-Ho;Yoon, Jung Hai
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.8 no.3
    • /
    • pp.121-133
    • /
    • 1975
  • Soils of the agricultural land derived mostly from volcanic ash in Jeju island may be characterized by relatively high PH, high contents of organic matter and exchangeable bases, and significantly low content of available phosphorus. The PH, organic matter, and available phosphorus of the soils in northern Jeju are 6.1, 12.6%, and 23 ppm, while those of the soils in the southern Jeju are 6.4, 3.7 %, and 76 ppm respectively. Upland soils in Jeju may be classified into 4 groups on the basis of soil fertility: black soil, very dark brown soil, dark brown, and red yellow soil. The organic matter content of black soil, very dark soil and dark brown soil is 15%, 7%, and 3% respectively. The soils of high organic matter content show the high phosphorus absorption coefficient, low content of available phosphorus, and low degree of the base saturation. The soil productivity for barley in the northern Jeju is higher than that in the southern Jeju and the productivity in the western Jeju is higher than that in the eastern part. The productivity for barley is in decreasing order of dark brown soil, very dark brown soil and black soil. Yields of potato and sweet potato in Jeju are higher than in the mainland. Those crops are considered to be tolerant to aluminumtoxicity. The response of sweet potato to nitrogen, phosphorus, and potassium in Jeju soils is lower than that in the mainland, while the response of barley and rape to nitrogen and phosphorus is higher than that in the mainland. The response to fertilizer applied is greater in the northern Jeju than in the southern Jeju. Lime requirement for the Jeju soils calculated on the basis of laboratory tests is so tremendous that single application of lime required might induce adverse effect. Most of the phosphorus applied to the Jeju soils is readily fixed as unavailable form and application of phosphorus in the level of 30 to 40 kg/10a is thought to give little effect.

  • PDF

Effect of the Pretreatment by Thermal Hydrolysis on Biochemical Methane Potential of Piggery Sludge (열가수분해 전처리가 양돈 슬러지의 메탄생산퍼텐셜에 미치는 영향)

  • Kim, Seung-Hwan;Kim, Ho;Kim, Chang-Hyun;Yoon, Young-Man
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.4
    • /
    • pp.524-531
    • /
    • 2012
  • The objective of this study was to investigate the organic solubilization (SCOD) and improvement of methane production for pig slurry by thermal hydrolysis. A sludge cake was pretreated by thermal hydrolysis at different reaction temperatures (200, 220, 250, $270^{\circ}C$). Ultimate methane potential (Bu) was determined at several substrate and inoculum (S/I) ratios (1:9, 3:7, 5:5, 7:3 in volume ratio) by biochemical methane potential (BMP) assay for 73 days. Pig slurry SCOD were obtained with 98.4~98.9% at the reaction temperature of $200{\sim}270^{\circ}C$. Theoretical methane potentials ($B_{th}$) of thermal hydrolysates at the reaction temperature of $200^{\circ}C$, $220^{\circ}C$, $250^{\circ}C$, $270^{\circ}C$ were 0.631, 0.634, 0.705, $0.748Nm^3\;kg^{-1}-VS_{added}$, respectively. $B_u$ of $200^{\circ}C$ thermal hydrolysate were decreased from $0.197Nm^3\;kg^{-1}-VS_{added}$ to $0.111Nm^3\;kg^{-1}-VS_{added}$ with the changes of S/I ratio from 1:9 to 7:3, and also $B_u$ of different thermal hydrolysates ($220^{\circ}C$, $250^{\circ}C$, $270^{\circ}C$) showed same tendency to $B_u$ of $200^{\circ}C$ thermal hydrolysate according to the changes of S/I ratio. Anaerobic biodegradability ($B_u/B_{th}$) of $200^{\circ}C$ thermal hydrolysate at different S/I ratios was decreased from 32.2% for S/I ratio of 1:9 to 17.6% for S/I ratio of 7:3. $B_u/B_{th}$ of $220^{\circ}C$, $250^{\circ}C$, and $270^{\circ}C$ thermal hydrolysat were decreased from 36.4% to 9.6%, from 31.3% to 0.8%, and from 26.6% to 0.8%, respectively, with the S/I ratio change, respectively. In this study, the rise of thermal reaction temperature caused the decrease of anaerobic digestibility and methane production while organic materials of pig slurry were more solubilized.

Geochemical Characteristics and Heavy Metal Pollutions in the Surface Sediments of Oyster Farms in Goseong Bay, Korea (고성만 굴 양식장 표층퇴적물의 지화학적특성과 중금속 오염에 관한 연구)

  • Kang, Ju-Hyun;Lee, Sang-Jun;Jeong, Woo-Geon;Cho, Sang-Man
    • The Korean Journal of Malacology
    • /
    • v.28 no.3
    • /
    • pp.233-244
    • /
    • 2012
  • Goseong bay, located in southeast sea of Korea with an area of 2,100 ha, is a semi-enclosed bay well-known for oyster farming cultured in an extended range of 148 ha. The objective of this study is to provide the fundamental data in order to manage the effective sea area. A total 26 of surface sediment were collected from Goseong bay to evaluate their sedimentary environment and heavy metals. The loss on Ignition (LOI), C/N ratio, acid volatile sulfide (AVS) and heavy metals were analyzed. loss on ignition (LOI) of surface sediment range from 1.00% to 3.03% (average 2.00%). The carbonate content ranges from 0.52% to 4.29% (average 2.37%). C/N ratio of organic matter showed that most part of organic matter comes from neighboring continent. Acid volatile sulfide (AVS) value of surface sediment from 0.02 mg/g to 1.43 mg/g (average 0.24 mg/g). A ten element of surface sediments (Al, As, Cd, Cr, Cu, Hg, Ni, Pb, V, Zn) were calculated by enrichment factor (Ef) and the results show that some areas are highly polluted with respect Cu and Hg. The correlation matrix displays the existence of remarkable levels of correlation with both positive and negative values among different variable pairs. LOI and AVS showed both positive values. LOI and AVS values falls under 2% and 1%. Therefore, Goseong bay showed good in quality of sediment.

Behavior of Cadmium, Zinc, and Copper in Soils -II. Effect of Organic Matter Treatment on Mobility of Cadmium, Zinc, and Copper in Soils- (토양내(土壤內) 카드뮴 아연(亞鉛) 및 구리의 행동(行動)에 관한 연구(硏究) -II. 토양내(土壤內) 카드뮴 아연(亞鉛) 및 구리의 이동(移動)에 미치는 유기물처리(有機物處理)의 영향(影響)-)

  • Yoo, Sun-Ho;Hyun, Hae-Nam
    • Applied Biological Chemistry
    • /
    • v.28 no.2
    • /
    • pp.76-81
    • /
    • 1985
  • Miscible displacement techniques were used to investigate the influence of the organic matter treatment on the mobility of Cd, Zn, and Cu through soil columns. The heavy metals moved most readily through the Bonryang soil (Typic Udifluvents) of relatively low in CEC, pH, and organic matter content. Most parts of Cd and Zn eluted within 7 pore volumes, but Cu eluted between 5 and 15 pore volumes. Although the Gangseo soil (Aquatic Eutrochrepts) had lower in CEC and organic matter content than the Gyorae soil (Typic Distrandepts), the heavy metals moved faster through the Gyorae soil than through the Gangseo soil. Cu eluted more slowly and in smaller quantities than Cd and Zn from the Bonryang soil, but did not eluted from the Gangseo and the Gyorae soils at all during the experimental period. The motility of the heavy metals from the Bonryang and the Gangseo soils was in the order of Cd>Zn>Cu, but that of the Gyorae soil was in the order of Zn>Cd>Cu. Cd and Zn eluted after 5 and 20 pore volumes respectively, from the Bonryang soil treated with 3% compost but Cu did not elute even after 30 pore volumes were collected. By 7% compost treatment only small amountssof Cd eluted after 20 pore volumes. The liming of the Bonryang soil retarded the mobility of Cd, Zn, and Cu. Humic acid treatment did not reduce the motility of the Cd and Zn to the extent observed in the Bonryang soil with compost, but reduced a little motility of Cu.

  • PDF

Biochemical Methane Potential Analysis of Mushroom Waste Medium (버섯 폐배지의 생화학적 메탄퍼텐셜 분석)

  • Kim, Chang-Gyu;Lee, Jun-Hyeong;Yoon, Young-Man
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.30 no.1
    • /
    • pp.13-21
    • /
    • 2022
  • Mushroom waste medium refers to the waste biomass generated after mushroom cultivating. And, the burden of treatment on mushroom farmhouse is increasing due to the absence of appropriate treatment method and increase of treatment costs of the mushroom waste medium. In this study, in order to assess the energy value of mushroom waste medium by an anaerobic digestion, methane potential and anaerobic organic matter decomposition characteristics were investigated. The theoretical methane potential(Bth) of mushroom medium(MM) was 0.481 Nm3-CH4/kg-VSadded, and the Bth of mushroom waste medium(MWM) was 0.451 Nm3-CH4/kg-VSadded. The biochemical methane potential(Bu-exp) of MWM was increased by 18% from 0.155 for MM to 0.183 Nm3-CH4/kg-VSadded for MWM. In the reaction kinetics analysis by the Modified Gompertz model, the maximum methane production rate(Rm) was increased from 4.59 for MM to 7.21 mL/day for MWM and the lag growth phase time(λ) was decreased from 2.78 for MM to 1.96 days for MWM. In the reaction kinetics analysis by the parallel first order kinetics model, the easily degradable organic matter(VSe) content was increased by 5.89% and the persistently degradable organic matter(VSp) content was 2.03% in MWM, and the non-degradable organic matter(VSNB) content was decreased by 7.85%. Therefore, it was evaluated that the anaerobic digestion efficiency of MWM was increased. The anaerobic digestion efficiency of MWM was assessed to be more improved than that of MM.

Evaluation of Possibility of Water Plant Wastes in Composting for Agricultural Recycling (수생식물 고사체의 농업적 재활용을 위한 퇴비화 가능성 평가)

  • Choi, Ik-Won;Seo, Dong-Cheol;Kang, Se-Won;Seo, Young-Jin;Lee, Sang-Gyu;Kang, Seog-Jin;Lim, Byung-Jin;Lee, Jun-Bae;Heo, Jong-Soo;Cho, Ju-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.2
    • /
    • pp.248-252
    • /
    • 2012
  • To evaluate the possibility of water plant wastes in composting for agricultural recycling, Phragmites communis (PHRCO), Typha orientalis (TYHOR) and Zizania latifolia (ZIZLA) were used as a compost materials. In composting basin, cumulative oxygen consumptions of the compost used by water plant wastes were rapidly increased at the early stage and slightly decreased in around 15 days. Cumulative oxygen consumptions under different water plant wastes were higher in the order of TYHOR > ZIZLA > PHRCO. Temperature changes during composting process were rapidly increased at the early stage and then slowly decreased to $30{\sim}40^{\circ}C$. The maximum temperatures were higher in the order of ZIZLA ($72.2^{\circ}C$ at 11 days after starting composting) > TYHOR ($70.2^{\circ}C$ at 10 days after starting composting) > PHRCO ($66.5^{\circ}C$ at 7 days after starting composting). Oxygen consumptions at maximum temperature were higher in the order of TYHOR ($12,485mg\;O_2\;kg^{-1}$) > ZIZLA ($12,400mg\;O_2\;kg^{-1}$) > PHRCO ($9,340mg\;O_2\;kg^{-1}$). Organic matter contents, moisture contents and OM/N rates in the compost ranged 39.5~44.8%, 29.6~35.6% and 27.9~32.9, respectively. Considering that water plant waste can supply some of the nutrient requirements of crops and is a valuable fertilizer.

Carbon Mineralization in different Soils Cooperated with Barley Straw and Livestock Manure Compost Biochars (토양 종류별 보릿짚 및 가축분 바이오차 투입이 토양 탄소 무기화에 미치는 영향)

  • Park, Do-Gyun;Lee, Jong-Mun;Choi, Eun-Jung;Gwon, Hyo-Suk;Lee, Hyoung-Seok;Park, Hye-Ran;Oh, Taek-Keun;Lee, Sun-Il
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.30 no.4
    • /
    • pp.67-83
    • /
    • 2022
  • Biochar is a carbon material produced through the pyrolysis of agricultural biomass with limited oxygen condition. It has been suggested to enhance the carbon sequestration and mineralization of soil carbon. Objective of this study was to investigate soil potential carbon mineralization and carbon dioxide(CO2) emissions in different soils cooperated with barely straw and livestock manure biochars in the closed chamber. The incubation was conducted during 49 days using a closed chamber. The treatments consisted of 2 different biochars that were originated from barley straw and livestock manure, and application amounts were 0, 5, 10 and 20 ton ha-1 with different soils as upland, protected cultivation, converted and reclaimed. The results indicated that the TC increased significantly in all soils after biochar application. Mineralization of soil carbon was well fitted for Kinetic first-order exponential rate model equation (P<0.001). Potential mineralization rate ranged from 8.7 to 15.5% and 8.2 to 16.5% in the barely straw biochar and livestock manure biochar treatments, respectively. The highest CO2 emission was 81.94 mg kg-1 in the upland soil, and it was more emitted CO2 for barely straw biochar application than its livestock biochar regardless of their application rates. Soil amendment of biochar is suitable for barely straw biochar regardless of application rates for mitigation of CO2 emission in the cropland.

Effect of Inoculating Materials on Food Waste Composting (식종물질이 음식물쓰레기 퇴비화정도 및 미생물활성에 미치는 영향)

  • Namkoong, Wan;Kim, Mi-Ja;Kim, Joung-Dae
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.5 no.1
    • /
    • pp.15-23
    • /
    • 1997
  • Commercial inocula and mature compost were added separately to food wastes in order to compare the inoculating effect on garbage decomposition. Among commercial inocula available in the market, GM (Green Microorganisms) and EM (Effective Microorganisms) were selected as test inocula. Garbage decompostion were evaluated in Volatile Solid (VS) reduction and FDA (Fluorescein DiAcetate) hydrolysis activity. VS reduction with mature compost experiment was higher than that with GM-added one. VS reduction rates were about 32% with mature compost and 27% with GM. When food wastes were treated with GM and EM based on the manufacturer's specifications, GM-added and EM-added food wastes showed only 8% and 9% of VS reduction respectively, which are much lower than those with the mature compost. FDA hydrolysis activity increased during the first 10 days of active composting periods for the composting experiments, while it decreased continuously for the experiments based on manufacturer's specifications.

  • PDF