• Title/Summary/Keyword: 유기물분해

Search Result 839, Processing Time 0.025 seconds

Anaerobic Mineralization of Organic Matter and Sulfate Reduction in Summer at Ganghwa Intertidal Flat, Korea (하계 강화도 갯벌의 혐기성 유기물 분해능 및 황산염 환원력)

  • Hyun, Jung-Ho;Mok, Jin Sook;Cho, Hye Youn;Cho, Byung Cheol;Choi, Joong Ki
    • Journal of Wetlands Research
    • /
    • v.6 no.1
    • /
    • pp.117-132
    • /
    • 2004
  • Despite its significance in understanding ecological structure and biogeochemical element cycles, there have been few studies on the microbial mineralization of organic matter and mineralization pathway in the intertidal flat of Korea. We measured anaerobic mineralization of organic matter and sulfate reduction rate, and evaluated the significance of sulfate reduction in total anaerobic carbon respiration at the southern part of Ganghwa Island. Depth-integrated carbon mineralization rate down to 6 cm depth ranged from 41.9 to $89.4mmol\;m^{-2}d^{-1}$, which accounted for approximately 216 tons of organic matter mineralization in entire intertidal flat area of Ganghwa($300km^2$). The results indicated that capacity for the organic matter mineralization in the Ganghwa tidal flat is comparable to highly productive salt marsh environments. Mineralization rates in the sediment amended with acetate were 2~5 times higher than in unamended sediment. The results implied that microbial mineralization was limited by the availability of organic substrates, and the organic matter mineralization capacity seems to be higher than estimated at ambient organic substrate level. Depth-integrated sulfate reduction rates within 6 cm depth of the sediment ranged from 20.7 to $45.1mmol\;SO{_4}^{2-}m^{-2}d^{-1}$, and sulfate reduction was mostly responsible for organic matter remineralization. It should be noticed that the increase of $H_2S$ in the sulfate reduction dominated tidal flat may result in the decrease of biological diversity.

  • PDF

The Determination of Anaerobic Biodegradability and Organic Fractionation of Agricultural Byproducts by Biochemical Methane Potential Assay Using Double First-Order Kinetic Model (반응속도 모델을 적용한 농업부산물의 혐기성 유기물분해율과 메탄생산잠재량 분석)

  • Shin, Kook-Sik;Yoon, Young-Man
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.29 no.4
    • /
    • pp.55-65
    • /
    • 2021
  • This study investigated methane productions and a degradation rate of organic matters by German standard method, VDI4630 test. In this study, 11 waste biomasses from agricultural fields were selected for the investigation. The objective of this study was to estimate a distribution of organic matters by using the Double first-order kinetics model in order to calculate the rate of biodegradable organic matters which degrade rapidly in the initial stage and the persistently biodegradable organic matters which degrade slowly later. As a result, all the biomasses applied in this study showed rapid decomposition in the initial stage. Then the decomposition rate began to slow down for a certain period and the rate became 10 times slower than the initial decomposition rate. This trend of decomposition rate changes is typical conditions of biomass decompositions. The easily degradable factors (k1) were raged between 0.097~0.152 day-1 from vegetable crops and persistent degradable factor (k2) were 0.002~0.024 day-1. Among these results, greater organic matter decomposition rates from VDI4630 had greater k1 values (0.152, 0.144day-1) and smaller k1 values (0.002, 0.005day-1) from cucumbers and paprika. In a meanwhile, radishes and tangerine rinds which had low decomposition rates showed 0.097 and 0.094 day-1 of k1 values and decomposition rates seems to affect k1 values.

Preliminary Study on Arsenic Speciation Changes Induced by Biodegradation of Organic Pollutants in the Soil Contaminated with Mixed Wastes (유기물분해에 따른 유류${\cdot}$중금속 복합오염토양내 비소화학종 변화의 기초연구)

  • 이상훈;천찬란;심지애
    • Economic and Environmental Geology
    • /
    • v.36 no.5
    • /
    • pp.349-356
    • /
    • 2003
  • As industrial activities are growing, pollutants found in the contaminated land are getting diverse. Some contaminated areas are subject to mixed wastes containing both organic and inorganic wastes such as hydrocarbon and heavy metals. This study concerns with the influence of the degradation of organic pollutants on the coexisting heavy metals, expecially for As. As mainly exists as two different oxidation state; As(III) and As(V) and the conversion between the two chemical forms may be induced by organic degradation in the soil contaminated by mixed wastes. We operated microcosm in an anaerobic chamber for 60 days, using sandy loam. The soils in the microcosm are artificially contaminated both by tetradecane and As, with different combination of As(III) and As(V); As(III):As(V) 1:1, As(III) only and As(V) only. Although not systematic, ratio of As(III)/As(Total) increase slightly at the later stage of experiment. Considering complicated geochemical reactions involving oxidation/reduction of organic materials, Mn/Fe oxides and As, the findings in the study seem to indicate the degradation of the organics is connected with the As speciation. That is to say, the As(V) can be reduced to As(III) either by direct or indirect influence induced by the organic degradation. Although Fe and Mn are good oxidising agent for the oxidation of As(III) to As(V), organic degradation may have suppressed reductive dissolution of the Fe and Mn oxides, causing the organic pollutants to retard the oxidation of As(III) to As(V) until the organic degradation ceases. The possible influence of organic degradation on the As speciation implies that the As in mixed wastes may be have elevated toxicity and mobility by partial conversion from As(V) to As(III).

Isolation and Identification of Organic Compounds-Degrading Bacteria for the Treatment of Food Wastewater (음식물류폐수처리를 위한 유기물분해 미생물의 분리 및 동정)

  • Chung, Doo-Young;Song, In-Geun;Kim, Young-Jun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.15 no.2
    • /
    • pp.128-135
    • /
    • 2007
  • Microorganisms which can degrade organic compounds such as proteins, lipids, and cellulose in food wastewater, were isolated from food wastewater, livestock wastewater, earthworm, and etc. Among these, eleven strains which showed higher degrading activities against three organic compounds, were finally isolated, characterized, and identified. Nine strains were found to be Bacillus species, and other two were to be Enterobacter sp. and Pantoea agglomerans. The strains FWB-5 (Bacillus pumilus), FWB-6 (B. lichenisformis) and OD-4 (Pantoea agglomerans), isolated from food wastewater and livestock wastewater, respectively, showed higher three enzyme activities to organic compounds, especially to cellulose, compared to other strains. The optimal growth conditions for the great enzyme activities were at $37^{\circ}C$ with pH 7.0 for FWB-5 and OD-4 strains, whereas, these were at $25^{\circ}C$ with pH 7.0 for FWB-6 strain.

  • PDF

Assessment of the Organic and Nitrogen Fractions in the Sewage of the Different Sewer Network Types by Respirometric Method (미생물 호흡률 측정에 의한 관거시스템 유형별 하수의 기질 분율 평가)

  • Park, Jong-Bu;Hur, Hyung-Woo;Kang, Ho;Chang, Sung-Oun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.8
    • /
    • pp.649-654
    • /
    • 2009
  • Respirometric analysis of domestic sewage by measuring oxygen uptake rate(OUR) was carried out for the experimental assessment of the organic and biomass fractions. The data of the organic and biomass fractions in sewage is essential for the activated sludge model to optimize the biological treatment plant. As a result of this study, the fractions of readily biodegradable substrate($S_S$), slowly biodegradable substrate($X_S$), inert soluble substrate($S_I$), inert particular substrate($X_I$) and heterotrophic biomass($X_{HAB}$) were about 26.6%, 41.5%, 8.5%, 14.7% and 8.7% on the basis of chemical oxygen demand($COD_{Cr}$), respectively. And the fractions of nitrogen were also studied. The fractions of soluble nitrate nitrogen($S_{NO}$), soluble ammonia nitrogen($S_{NH}$), soluble nonbiodegradable organic nitrogen($S_{NI}$), soluble biodegradable organic nitrogen($S_{ND}$) and slowly biodegradable organic nitrogen($X_{ND}$) were about 3.7%, 64.9%, 4.7%, 9.4% and 17.4%, respectively.

Rates of Anaerobic Carbon Mineralization and Sulfate Reduction in Association with Bioturbation in the Intertidal Mudflat of Ganghwa, Korea (강화도 남단 갯벌의 혐기성 유기물 분해능과 황산염 환원력 및 저서 동물이 이에 미치는 잠재적 영향)

  • Mok, Jin-Sook;Cho, Hye-Youn;Hyun, Jung-Ho
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.10 no.1
    • /
    • pp.38-46
    • /
    • 2005
  • This study was carried out to quantify the rates of anaerobic mineralization and sulfate reduction, and to discuss the potential effects of benthic fauna on sulfate reduction in total anaerobic carbon respiration in Ganghwa intertidal flat in Korea. Anaerobic carbon mineralization rates ranged from 26 to 85 mmol $C\;m^{-2}\;d^{-1}$, which accounted for approximately 46 tons of daily organic matter mineralization in the intertidal flat of southern part of the Ganghwa Island (approximately $90\;km^2$). Sulfate reduction ranged from 22.6 to 533.4 nmol $cm^{-3}\;d^{-1}$, and were responsible for $31{\sim}129%$ of total anaerobic carbon oxidation, which indicated that sulfate reduction was a dominant pathway for anaerobic carbon oxidation in the study area. On the other hand, the partitioning of sulfate reduction in anaerobic carbon mineralization in October decreased, whereas concentrations of Fe(II) in the pore water increased. The results implied that the re-oxidation of Fe(II) in the sediments is stimulated by macrobenthic activity, leading to an increased supply of reactive Fe(II), and thereby increasing Fe(III) reduction to depress sulfate reduction during carbon oxidation.

Reaction Characteristics of Dairy Wastewater through Aerobic Biodegradability Assessment (호기성 생분해도 평가를 통한 유가공 폐수의 반응특성)

  • Choi, Yong-Bum;Han, Dong-Joon;Kwon, Jae-Hyouk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.64-71
    • /
    • 2018
  • The purpose of this study is to investigate the characteristics of the substrate of dairy wastewater through aerobic biodegradation and to use the results as the basic data for the efficient treatment of dairy wastewater. The SCODcr of the part of the matter that consisted of readily biodegradable organics (Ss) was 84.2%, which is higher than those of seafood processing wastewater (75.8~77.9%) and pigpen wastewater (58.2%). The proportion of non-biodegradable organics (SI) ranged from 5.6% to 6.4%, and the proportion of inert organics (SIi) generated by microbial metabolism ranged from 3.6 to 3.7%. The content coefficient (YI) of the non-biodegradable dissolved organic matter was in the range of 0.092 to 0.099, and the generation coefficient (Yp) of the inert substance produced by the microbial metabolism was in the range of 0.039 to 0.040. The analysis results of the organic component coefficient showed that approximately 91.0% of the dissolved organic matter of the dairy wastewater was biodegradable, and approximately 92.5% of the dissolved organic matter was the Ss component. Furthermore, the proportion of biodegradable organic matter in the total organic matter (TCODcr) was 89.3%. The proportions of non-biodegradable organics (SI) and non-biodegradable suspended organics (XI) were 3.0% and 7.7%, respectively, which are lower than those in similar wastewater. This means that the milk processing wastewater has a high aerobic biodegradability.

Correction Method of Anaerobic Organic Biodegradability by Batch Anaerobic Digestion (회분식 혐기소화에 의한 혐기적 유기물 분해율의 보정 방법)

  • Kim, Seung-Hwan;Oh, Seung-Yong;Kim, Chang-Hyun;Yoon, Young-Man
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.1086-1093
    • /
    • 2012
  • This research was carried out to develop the correction method of VDI4630 method improving accuracy, and investigated the effects of carbonate ion ($CO_3{^{2-}}$) and reactant water ($H_2O$) on anaerobic organic biodegradability in VDI4630 method. Pig blood, pig intestine residue, pig digestive tract content, and cattle rumen content were experimented as waste biomasses. Chemical formulas of pig blood, pig intestine residue, pig digestive tract content, and cattle rumen content were $C_{3.78}H_{8.39}O_{1.46}N_1S_{0.01}$, $C_{9.69}H_{15.42}O_{2.85}N_1S_{0.03}$, $C_{25.17}H_{43.32}O_{15.04}N_1$, $C_{27.23}H_{42.38}O_{15.93}N_1S_{0.11}$, respectively. And amount of reactant moisture for the anaerobic degradation of organic materials were 0.336, 0.485, 0.227, 0.266 mol, respectively. In pig blood, pig intestine residue, pig digestive tract content, and cattle rumen content, anaerobic organic biodegradability presented as $B_u/B_{th}$ were 82.3, 81.5, 70.8, and 66.1%, and anaerobic organic biodegradability (AB) by VDI4630 method were 72.2, 87.8, 74.2, 62.0%, and that were significantly different with anaerobic organic biodegradability presented as $B_u/B_{th}$. The effects of carbonate ion and reactant water on anaerobic organic biodegradability were not significant, But Accuracy of anaerobic organic degradability was expected to able to be improved by the correction method of VDI4630 considering the carbonate ion at digestate and the reactant water quantified.

Estimation of change in primary production of rivers and contribution of organic matter by discharge volume of Paldang Dam (팔당댐 방류량에 의한 한강의 일차생산량 변화와 유기물 기여도 산정)

  • Ui Seok Kim;Eun Mi Hong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.218-218
    • /
    • 2023
  • 일차생산은 화학합성 또는 광합성에 의하여 무기탄소가 유기물질로 전환되는 것을 의미한다. 한강은 하류로 갈수록 유속이 느리지만 수심이 깊어져 부착조류가 서식하기 쉽지 않은 환경이기에 대부분의 일차생산자는 식물플랑크톤이다. 선행연구와 비교 결과, 한강 본류의 부영양화가 여름철에 발생하고 있으며 팔당댐 방류량과 지류의 유입에 의한 유기물 증가로 하천 내 1차 생산의 기여도가 증가하고 있고, 이는 유기물 근원을 판정하여 수질오염에 대한 처리대책을 위해 지속적으로 연구가 필요하다. 따라서 본 연구는 한강본류에서 식물플랑크톤의 일차생산력을 조사하고, 유기물의 분해속도를 측정하여 당해 유역의 유기물 수지를 추정하여 한강 고유의 특성과 지류에서 기인할 수 있는 부영양화 기여도를 파악하여 부영양화에 의한 유기물 증가로 발생할 수 있는 수질오염을 예측하고자 한다. 조사유역은 한강의 팔당댐 방류구로부터 신곡수중보까지 전 구역 중 총 12개의 지점을 선정하였다. 기간은 2021년 5월부터 2022년 3월까지 계절별 2회로 총 8회 조사를 실시하였으며, 한강본류에서는 식물플랑크톤의 산소소비법을 통해 일차생산력과 유기물 분해속도를 조사하여 내부기원 유기물을 측정하였고, 한강본류로 유입되는 4개의 유입하천에서는 COD를 조사하여 외부기원 유기물을 측정하여 한강에서 발생하는 총유기물량을 산정하였다. 연구 결과, 하류 지점으로 갈수록 일차생산량이 점차 중가하였으며 지천이 유입되는 안양천, 탄천지점에서 유기물분해 속도가 빠르게 나타났다. 이는 수온 상승으로 인한 미생물 활성도가 높아져 식물플랑크톤의 일차생산량이 증가한 것으로 사료된다. 또한 여름 조사 전 강우에 의한 팔당댐 방류량 증가로 인해 식물플랑크톤 현존량이 다른계절에 비해 비교적 낮았지만, 호수의 부영양호 기준보다 높게 나타나 부영양한 수체로 판단하였다.

  • PDF

Effects of Global Warming on the Estuarine Wetland Biogeochemistry (기후변화가 하구 습지 토양의 생지화학적 반응에 미치는 영향에 관한 연구)

  • Ki, Bo-Min;Choi, Jung-Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.8
    • /
    • pp.553-563
    • /
    • 2011
  • This study investigated the effects of elevated $CO_2$ and nitrogen addition on the anaerobic decomposition mediated by microorganisms to determine the microbial metabolic pathways in the degradation of organic matters of the sediments. There were statistically significant differences(P < 0.05) in the rates between denitrification and methanogenesis upon increased $CO_2$ concentration, nitrogen addition, in the presence of plants. Based on the assumption that anaerobic degradation of organic matter mainly occurs through denitrification, iron reduction, and methanogenesis, methanogenesis is the dominant pathways in the decomposition of organic matter under the condition of elevated $CO_2$ and nitrogen addition. In addition, the altered environment increased anaerobic carbon decomposition. Therefore, it can be concluded that freshwater wetland sediments have positive effects on the global warming by the increased methanogenesiss as well as increased anaerobic carbon decomposition.