• Title/Summary/Keyword: 유거수

Search Result 63, Processing Time 0.028 seconds

Runoff in upland soils at a torrential rain with soil texture and slopeness (집중강우시 우리나라 밭토양의 토성별 경사도별 물유출 양상)

  • Jung, Kang-Ho;Hur, Seung-Oh;Ha, Sang-Geon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.255-259
    • /
    • 2005
  • 본 연구는 1981-1991년 농업과학기술원 라이시미터에서 수집한 결과를 이용하여 집중강우시 경사지 밭토양의 물유출 특성을 구명하였다. $7\~9$월 집중강우시 토양 침투수나 지표 유거수는 농업지역에서 환경으로 물질이 이동하는 주요 경로이며 특히 경사지 밭토양에서 지표 유거수는 토양유실의 주원인 중 하나이기 때문에 이에 대한 이해는 매우 중요하다. 이를 위해 강우량, 지표 유거수량, 지하 침투수량 측정 자료 중 호우주의보가 발령되는 일강우량 80mm이상일 때를 대상으로 하여 토성과 경사도에 따른 강우량과 유거수, 침투수의 관계를 분석하였다. 강우량이 적을 때 강우에 대한 침투수와 유거수의 비율은 강우시 표토의 토양수분함량에 많은 영향을 받는다. 이는 표토의 토양수분함량에 따라 유출 또는 침투 발생 유효강우량이 결정되기 때문이다. 강우량이 적을 때의 유거수량과 침투수량을 판단하기 위해 범용토양유실예측공식(Universal soil loss equation, USLE)에서는 0.5 inch 즉, 12.5 mm 이상의 강우를 유출에 대한 유효강우로 가정하고 있으며 많은 모형에서 토양의 침투속도, 포장용수량, 강우시점의 토양수분함량의 함수로 유출 또는 침투 유효강우량을 산정하고 있다. 그러나 강우량이 클 때는 강우에 대한 침투수와 유거수에 비율에 토양수분함량이 미치는 영향이 비교적 적기 때문에 토양의 수분함량에 대한 고려없이 강우와 침투수, 유거수에 대한 관계를 평가하는 것이 가능하였다. 경사도 $10\%$, 경사장 15m, 피복작물 콩인 양토를 기준으로 할 때 강우량과 침투수의 관계는 $I_{10}(mm)=0.44R(mm)+5.8(r^2=0.55)$이었다. y절이 발생한 이유는 이전 강우에 의해 침투되고 있는 물이 있음을 함축하며 기울기 0.40은 강우의 $40\%$가 지하로 침투하였음을 의미한다. 침투수량은 토성별로 양토를 1.0으로 기준할 때 사양토가 1.12로 가장 컸고, 식양토 0.94, 식토 0.91로 평가되었다. 이는 토성간의 침투속도 및 투수속도의 경향이 반영된 것이다. 경사에 따라서는 경사도가 증가할수록 지수적으로 감소하였으며 $10\% 경사일 때를 기준으로 $I(mm)=I_{10}{\times}1.17{\times}e^{-0.0164s(\%)}$로 나타났다. 같은 조건에서 강우량과 유거수의 관계는 $Ro_{10}(mm)=5.32e^{0.11R(mm)}(r^2=0.69)$로 나타났다. 이는 토양의 투수특성에 따라 강우량 증가에 비례하여 점증하는 침투수와 구분되는 현상이었다. 경사와 토양이 같은 조건에서 나지의 경우 역시 $Ro_{B10}(mm)=20.3e^{0.08R(mm)(r^2=0.84)$로 지수적으로 증가하는 경향을 나타내었다. 유거수량은 토성별로 양토를 1.0으로 기준할 때 사양토가 0.86으로 가장 작았고, 식양토 1.09, 식토 1.15로 평가되어 침투수에 비해 토성별 차이가 크게 나타났다. 이는 토성이 세립질일 수록 유거수의 저항이 작기 때문으로 생각된다. 경사에 따라서는 경사도가 증가할수록 증가하였으며 $10\% 경사일 때를 기준으로 $Ro(mm)=Ro_{10}{\times}0.797{\times}e^{-0.021s(\%)}$로 나타났다.

  • PDF

Runoff Loss of NO3-N Derived from Pig Manure Under Upland Condition (돈분이 시용된 밭토양에서 질산태질소의 유거손실)

  • Yun, Sun-Gang;Park, Kwang-Lai;Kim, Min-Kyeong;Kim, Won-Il;Yoo, Soon-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.3
    • /
    • pp.158-164
    • /
    • 2001
  • The purpose of this study was to assess the runoff of nitrogen derived from pig manure under upland condition. Bare and maize cultivated conditions were compared to estimate the effect of plant on the runoff loss of nitrogen and other nutrients by application of pig manure. Soil used in this experiment was sandy loam, and the fermented pig manure was applied at the rate of 0, 50, and $100ton\;ha^{-1}$. The amount of runoff was measured after every rainfall and water samples were analyzed for nitrate and other cations. Runoff was increased with the rainfall, but was depended on the application rate of pig manure at both bare and maize cultivated plots. Concentrations of nitrate in runoff at 0, 50 and $100ton\;ha^{-1}$ application of pig manure were higher at the maize cultivated plots than those at bare plots by 86.9, 42.9, and 33.6%, respectively. However, total mass of nitrate by runoff loss was higher at the bare plot ranging from 1.34 to $3.15kg\;NO_3-N\;ha^{-1}$. The equivalent ratio of nitrate to sum of cations in runoff was higher at the bare plot than that of maize cultivated plots. The concentration of cations in runoff was in the order of K> Mg> Na> Ca.

  • PDF

Effect of Increased Slope on Corn Productivity and Nitrogen Losses in Runoff Water (경사도 증가가 옥수수의 생산성 및 유거수 중의 N의 유실에 미치는 영향)

  • Jung, Min-Woong;Yook, Wan-Bang;Choi, Ki-Choon
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.31 no.2
    • /
    • pp.167-176
    • /
    • 2011
  • 본 연구는 우분액비의 시용이 경사도를 달리한 사료용 옥수수 재배지에서 옥수수의 생산성 및 유거수 중의 N의 유실에 미치는 영향을 조사하기 위하여, 건국대학교 축산대학 사료작물 시험포 내 설치된 Erosion apparatuses (가로 0.33 m, 세로 3 m, 깊이 0.4 m)를 이용하여 수행하였다. 시험구의 경사도는 0%, 8.75%, 17.50%로 하였으며, 우분액비는 6개월 이상 부숙된 것으로 질소 기준 200 kg/ha 시용하였다. 옥수수의 건물생산성과 사료가치는 경사도에 의해 영향을 받았으며, 17.50% 경사지의 건물생산성은 0% 경사지의 건물생산성에 비해 유의적인 감소를 보였다 (P<0.05). 유거수 중의 평균 $NO_3^--N$$NH_4^+-N$의 농도는 경사가 높아질수록 유의적으로 증가하였다(P<0.05). 이상의 결과에서 보는 바와 같이 우분액비를 시용하여 사료용 옥수수를 재배할 경우, 경사도가 증가할수록 그리고 집중호우가 발생할 경우에 유거수 중의 양분 유실량은 증가가 예상되기 때문에 경사도가 심한 지역에서 옥수수를 재배할 때에는 양분유실에 따른 수질오염을 고려하여 사료작물 재배 방법이 모색되어야 한다.

Effects of Pig Slurry Application on the Characteristics of Runoff Water in Volcanic Ash Soil in Jeju (제주 화산회토양에서 돈분액비 시용이 유거수의 특성에 미치는 영향)

  • Park, Nam-Geon;Hwang, Kyung-Jun;Park, Hyung-Soo;Song, Sang-Teak;Kim, Moon-Cheol
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.27 no.3
    • /
    • pp.189-196
    • /
    • 2007
  • This study was conducted to determine the effects of application levels of pig slurry on the characteristics of runoff water in volcanic ash soil in Jeju, Korea. This study was arranged in randomized complete block design. The data represent the means of the three experiments. Experimental plots were consisted of five treatments such as no fertilizer, chemical fertilizer at 200kg N/ha/year and pig slurry levels at 200, 400 and 600kg N/ha/year. The concentrations of BOD and COD in 600kg N/ha pig slurry were significantly higher (p<0.05) than those of the other treatments at initial sampling at 12 days after application. The total nitrogen concentration in runoff water increased with increasing pig slurry. The total phosphorous concentration in runoff water was hardly influenced by application levels of pig slurry since there were no significant difference among the treatments. The concentrations of $NO_3-N\;and\;NH_4-N$ were raised (p<0.05) in proportion to application levels of pig slurry. In conclusion, pig slurry usage at 200kg N/ha to the volcanic ash soil in Jeju area can replace the chemical fertilizer. However, more than 200kg N/ha of pig slurry may not be appropriate, because it may contaminate the water environment.

Salt Movement of Soils by Runoff in Green House Area (시설재배지 토양의 유거수에 의한 염류의 이동)

  • Kang, Bo-Koo;Kim, Hyun-Ju;Lee, Kyung-Ja;Kim, Jai-Joung;Hong, Soon-Dal
    • Korean Journal of Environmental Agriculture
    • /
    • v.20 no.2
    • /
    • pp.112-115
    • /
    • 2001
  • Salt accumulation and movement by runoff ware studied in runoff resevior lysimeter constructed in a green house located in the area of Cheongju, Chungbuk province. Average runoff ratio of rainfall within period of this experiment was 58%. The average content of cations lost from field soil by runoff was in the order of $Ca^{2+}(27.12\;mg/L\;)$ > $K^+(9.18\;mg/L)$ > $Mg^{2+}(2.53\;mg/L)$ > $Na^+(1.89\;mg/L)$ and in the care anions $SO_4\;^{2-}(63.38\;mg\;/L)$ > $NO_3\;^-(25.40\;mg/L)$ > $Cl^-(4.19\;mg/L)$ > $PO_4\;^{3-}(3.18\;mg/L)$. Amounts of salt movement by runoff $SO_4\;^{2-}(140.2\;kg/ha)$, $Ca^{2+}(59.9\;kg/ha)$, $NO_3\;^-(56.1\;kg/ha)$, $K^+(20.3\;kg/ha)$, $Cl^-(9.3\;kg/ha)$, $PO_4\;^{3-}(7.0\;kg/ha)$, $Mg^{2+}(5.6\;kg/ha)$ and $Na^+(4.2\;kg/ha)$. The loss amount of $PO_4\;^{3-}$ was the lowest among the anions investigated in this experiment. $P_2O_5$ was accumulated on the soil surface due to strong affinity for the sorption site on the soil particle surface.

  • PDF

Effects of Rainfall Events on Soil in Orchard Field under Herbicide Treatment. 1. Temporal Characteristics in Soil Physical and Chemical Properties (제초제 처리 과수원 포장에서 강우 사상의 효과. 1. 토양 물리성과 화학성의 변화)

  • Chung, Doug-Young;Kim, Pil-Joo;Park, Mi-Suk
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.1
    • /
    • pp.25-35
    • /
    • 2010
  • The periodic application effects of two different herbicides on soil physical properties were observed in a slightly hilly orchard of pear tree located on the southestern flank of the Palbong Mountain in Gongju Chungnam : (1) bare surface vegetation; (2) glyphosate-treated plot; (3) paraquat-treated plot. The slope of experimental plots ranged from 5.5%to 10.2%at an altitude of 125 mand 896 $m^2$ ($28m{\times}32m$) in area. The total respective rainfall events were 47, 52, 52 times during experimental period from 2006 to 2008, while approximately 65 percent of daily rainfall intensity from2006 to 2008 was less than 20 mm a day. The organic matter contents on the surface 15 cm soil ranging from1.23%to 1.84%in 2006 were changed into from1.35 %to 2.28%in 2008 in the order of control > glyphosate > paraquat > bare plot in 2008, indicating that the herbicide treatment influenced the accumulation organic matter in soil. The changes in soil particle contents showed that the loss of soil particles in top 5 cm soil depth was greater in a bare soil than in other treatments such as control, glyphosate, and paraquat-treated plot. The net changes in the bulk densities showed that there were little variations between May of 2006 and Nov. of 2008 even though there were some losses of the soil particles. The soil strength of the glyphosate-treated bare plots was much greater than those of other plots such as control, glyphosate, and paraquat plots. However the soil strengths in control plots were lower than those in the plots of glyphosate and paraquat treated ones.

Effect of Application level of Liquid Cattle Manure on the Run-Off Water and Soil Properties in Mixtures Swards (혼파초지에서 우분액비 시용수준이 유거수 및 토양특성에 미치는 영향)

  • 김원호
    • Journal of Animal Environmental Science
    • /
    • v.6 no.1
    • /
    • pp.53-58
    • /
    • 2000
  • A manure management plan is important for all daily operations. This study was conducted to investigate the effect of application level of liquid cattle manure on the soil properties and changes of BOD and COD content in run-off water at the mixtures swards of National Livestock Research Institute RDA Suweon in 1995. The experiment was arranged in a randomized block design with five treatments consisting of no fertilizer chemical fertilizer application of 40, 60 and 80MT/ha as liquid cattle manure. The quantity of run-off for a no fertilizer was the highest of 1,469.4mm but that for a application level of liquid cattle manure of 60MT/ha was the lowest of 1,278.1mm. The change of BOD in run-off for a no fertilizer was the lowest of $19.84m{\ell}/{\;}{\ell}$, but that for a application level of liquid cattle manure of 80MT/ha was the highest of $36.22m{\ell}/{\;}{\ell}$. Change of COD in run-off for a no fertilizer was the lowest of $21.28m{\ell}/{\;}{\ell}$ but that for a application level of liquid cattle manure of 80MT/ha was the highest of $37.51m{\ell}/{\;}{\ell}$. Available phosphorus and total-N content of soil chemical properties was higher at liquid cattle manure than chemical fertilizer.

  • PDF

Effects of Vegetative Buffers on Reducing Soil Erosion and Nutrient Loss of Highland Field in Korea (고랭지밭의 토양침식 저감을 위한 완충식생대의 효과)

  • Jin, Yong-Ik;Lee, Jeong-Tae;Lee, Gye-Jun;Hwang, Seon-Woong;Zhang, Yong-Seon;Park, Chang-Young;Seo, Myung-Chul;Ryu, Jong-Soo;Jeong, Jin-Cheol;Chung, Ill-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.4
    • /
    • pp.231-238
    • /
    • 2009
  • This study was carried out to investigate the effect of vegetative buffer to reduce runoff and soil and nutrient loss at highland agricultural area. The soil of experimental field was classified as Ungyo series (Fine, Humic Hapludults). An area of each field with lysimeter was $50m^2(width\;2.5m{\times}length\;20m)$ and was a gradient of 17%. Chinese cabbage (Brassica campestris L.) was cultivated by general management in each field. For establishing vegetative buffer, rye (Secalecereale L.), tall fescue (Festucaarundinacea Schreb) and orchard grass (Dactylis glomerata L.) were planted at the edge of field. Rye buffers were 1m, 2m and 4m wide. Both orchard grass and tall fescue buffers were 2m wide. Vegetative buffers were set up in September 2005 and chinese cabbage was planted in June 2006. Soil loss, runoff and nutrient loss were measured from June to August in 2006. Since the precipitation amount was heavy in July, amounts of runoff, soil erosion and nutrient loss were the highest in July during this study period. In comparison with control, vegetative buffers of rye 2m, orchard grass 2m and tall fescue 2m reduced runoff by 3%, 1% and 2%, respectively. In comparison among width of rye buffer, rye 1m, rye 2m, and rye 4m reduced by 1%, 4% and 13%, respectively. Vegetative buffers of rye 2m, orchard grass 2m and tall fescue 2m showed the reducing of soil loss by 59%, 46% and 28%, respectively. In comparison among width of rye buffer, the highest reducing effect of 88% was observed in 4m treatment. Additionally, vegetative buffer reduced N, P and K losses in runoff and eroded soil which were 10 to 54%, 7 to 24% and 11 to 21%, respectively. In different widths, wider vegetative buffer showed lower loss of N, P and K in runoff and eroded soil. As a result of this study, the vegetative buffer of rye was most effective for reducing runoff and soil loss in comparisons with other plants. In addition, wider range of buffers recommended for reducing runoff and soil loss, if possible.

Effects of Cattle Slurry Application According to the Slopes on Forage Yield and Nutrient Runoff in Mixed Grassland (경사지에 따른 우분 액비의 시용이 목초의 생산성 및 양분의 유실에 미치는 영향)

  • Jung, Min-Woong;Choi, Ki-Choon;Yoon, Chang;Kim, Won-Ho;Yook, Wan-Bang
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.27 no.1
    • /
    • pp.21-28
    • /
    • 2007
  • This study was conducted to investigate the effects of the degree of slope according to cattle slurry (CS) application on productivity of herbage yield and nutrients runoff in mixed grassland. silage corn and environmental pollution in silage corn cultivation soil. Field study was conducted on the steel-made erosion apparatuses which consisted of various degree of slope, such as 0%, 8.75% and 17.50%, Dry matter yield and N yield of forages decreased as the degree of the slope increased, whereas N contents increased as the degree of slope increased. $NO_3-N$ and $PO_4-P$ concentrations from the surface run-off significantly elevated by increasing the slope during the experimental period (P<0.05). However, $NO_3-N$ and $PO_4-P$ concentrations $PO_4-P$ content from the surface run-off by application of CS maintained a low levels during the experimental period. In conclusion, com productivity and nutrient losses from run-off are significantly affected by heavy rainfall on the sloping land. The results of this study suggest that CS application in the sloping land can be an important source of pollution for surface water if intensity rainfall takes place within a short period.

Nitrogen Transformation in Soil Cooperated with Organic Composts and Bio-char During Corn (Zea mays) Cultivation (옥수수 재배 시 퇴비 및 바이오차 시용 토양에서 질소 이동 동태)

  • Shin, JoungDu
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.22 no.3
    • /
    • pp.33-40
    • /
    • 2014
  • This study were conducted to evaluate the N mineralization and nitrification rates and to estimate the losses of total carbon and nitrogen by runoff water in soils cooperated with organic composts and bio-char during corn cultivation. For the experiment, the soil texture used in this study was clay loam, and application rates of chemical fertilizer and bio-char were $230-107-190kg\;ha^{-1}$($N-P_2O_5-K_2O$) as recommended amount after soil test and 0.2% to soil weight. The soil samples were periodically taken at every 15 day intervals during the experimental periods. The treatments were consisted of cow compost, pig compost, swine digestate from aerobic digestion system, and their bio-char cooperation. For N mineralization and nitrification rates, it was shown that there were generally low in the soil cooperated with bio-char as compared to the only application plots of different organic composts except for 47 days after sowing. Also, they were observed to be highest in the application plot of swine digestate from aerobic digestion system. For loss of total carbon by run-off water, it was ranged from 1.5 to $3.0kg\;ha^{-1}$ in the different organic compost treatment plots. However, Loss of total carbon with bio-char could be reduced at $0.4kg\;ha^{-1}$ in PC treatment plot. Also, with application of bio-char, total nitrogen was estimated to be reduced at 4.2 (15.1%) and $3.8(11.8%)kg\;ha^{-1}$ in application plots of pig compost and swine aerobic digestate, respectively.