• Title/Summary/Keyword: 유가자원 회수

Search Result 107, Processing Time 0.02 seconds

A Study on the Recovery of Valuable Resources from Abandoned Fold Mine Tailings (금 광산 폐망미로부터 유가자원 회수에 관한 연구)

  • 채영배;정수복;윤평란
    • Resources Recycling
    • /
    • v.8 no.3
    • /
    • pp.37-42
    • /
    • 1999
  • Ths sludy was canied out to recover gold and sllics from abandoned gold mine talings with about 4.5 ghonAu and 84.88 wt% SOz. Tl~bee nef~cialiop~ro~c esses including crushing, screening, magnelic and gravity (humprey sp~rals,h aking table) separation \ulcornervex employed. Results were Feasible to rccovn h e gold concentrates (307.1 gltoilon .4u . 0.60 wr%, 97.7 giton Au : 0.27 wl%, 15.3 &/ton Au . 5.23 wt%, 21.2 g/ton Au : 2.42 wl%) and silica (96.40 wi% SiO\ulcorner yield 60 65 ~ 1 % )

  • PDF

Recovery of Waste Back Board and Gold from the Process of Printed Circuit Board (인쇄회로기판(印刷回路基板) 제조공정(製造工程)의 폐(廢) Back Board 및 금(金) 회수(回收))

  • Kim, Yu-Sang
    • Resources Recycling
    • /
    • v.19 no.1
    • /
    • pp.57-65
    • /
    • 2010
  • Recently, we have investigated the recovery of resources from the waste material of manufacturing printed circuit board. As printed circuit board or chip has become light, small, high reliability, it is necessary to reuse and recover resources from them. Especially, the printed circuit board that has been used for important mobile electronic pans are plated with min.0.03 ${\mu}m$ to max.50 ${\mu}m$. As increasing the cost of gold, raw material, chemicals, payments and waste material, it has been accelerated the competition for reuse and recovery. But, it is insufficiency of technician and equipments for the recovery of effective resource. In this paper, as analyzing the technical trend of gold recovery and waste back board from the manufacturing process of printed circuit board, it may be effective of recycling, further more it may be contributed to develop the valuable resources.

Recovery of Valuable Materials from Gold Mine Tailings (금(金) 광산(鑛山) 광미(鑛尾)로부터 유가자원(有價資源) 회수(回收)에 관한 연구(硏究))

  • Oh, Won;Cho, Hee-Chan;Lee, Jin-Soo
    • Resources Recycling
    • /
    • v.19 no.6
    • /
    • pp.77-85
    • /
    • 2010
  • This study was carried out to develop a process flow sheet for recovering valuables (gold and high purity silica) from the gold mine tailings containing 1.7 g/ton of gold and 79.48 wt.% $SiO_2$. Float-sink tests using heavy liquids was conducted to explore the possibility of recovering gold by gravity separation. Hydrocyclone, froth flotation, and triboelectrostatic separatoin tests were conducted to recover high purity silica from the gold mine tailings. The results of float-sink tests showed that particles containing 5.58 g/ton of gold could be obtained at 2.72 specific gravity, but with very low yields around 3%. Meanwhile, all tests with hydrocyclone, froth flotation, and triboelectrostatic separation showed that high purity silica with $SiO_2$ content over 90% could be obtained. The purity could be improved further up to about 94% by employing several recleaning steps in the froth flotation and triboelectrostatic process.

Recovery of the Metal and Energy Resources from the Wasted PCB (폐 인쇄회로기판의 유가금속 및 에너지자원 회수)

  • Kim, Yu-Sang
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.104-104
    • /
    • 2009
  • 금값 폭등과 에너지자원 고갈에 따라 폐 인쇄회로기판의 유가금속 및 에너지자원을 효과적으로 회수하고자, 최근 국내외 금 회수 및 폐백보드 활용방안을 제시하였다. 금을 회수하는 방법으로는 침적박리, 농축처리, 중화처리, 수용액환원처리, 이온교환수지, 전해채취 등의 방법이 있다. 금은 상온침적박리 회수하며 폐백보드는 이동식 건축내장재로 활용하고자 한다.

  • PDF

A Study on Physical Properties of Recyclables obtained from MSW (재활용(再活用) 대상(對象) 폐자원( 廢資源)의 물리적(物理的) 성상(性狀) 분석(分析)에 관한 연구(硏究))

  • Choi, Woo Zin;Yoon, Kun Duk
    • Resources Recycling
    • /
    • v.21 no.5
    • /
    • pp.72-78
    • /
    • 2012
  • In general, recyclable items are separately discharged from households and then, hand-sorted into different types of valuables at materials recovery facilities (MRF). However, most of residues after hand-sorting are finally end up with landfill and/or incineration due to lack of separation technologies and economical reasons. In the present study, physical properties on recyclable items obtained from an MRF are investigated to improve the recovery of valuable items. The results of physical compositions based on the sizing tests are also presented.

Recovery of Precious Metals from Waste PCB and Auto Catalyst Using Arc Furnace (귀금속 함유 폐기물로부터 아크로를 이용한 유가금속 회수)

  • Ban Bong-Chan;Kim Chang-Min;Kim Young-Im;Kim Dong-Sn
    • Resources Recycling
    • /
    • v.11 no.6
    • /
    • pp.3-11
    • /
    • 2002
  • Recently, waste printed circuit board (PCB) has significantly increased in its amount due to the rapid development of electronic industries. Since several kinds of noxious materials and also valuable metals are contained in it, the waste PCB is in an urgent need of recycling for the dual purposes for the prevention of environmental pollution and recovery of valuable resources. Also, the catalyst which equipped in the exhaust pipes of automobiles to reduce emission of air pollutants contains precious met-als so that their recovery from the waste auto-catalysts is required. In this study, the recovery of valuable metals from waste PCB and auto-catalyst by arc furnace melting process has been investigated, which is known to be very stable and suitable f3r less production of pollutants due to its high operating temperature. The effect of the kind of flux on the recovery of precious metals was examined by using quicklime, converter slag, and copper slag as the flux. In addition, the influence of direct and alternating current and the applying direction of direct current has been investigated. It was observed that using converter or copper slag as a flux was more desirable for a higher efficiency in the precious metal recovery compared with quicklime. For the effect of current, application of direct current taking the bottom as a negative pole generally showed a better efficiency for the extraction of valuable metals from waste PCB, which was also observed for the case of waste auto-catalyst. The average recovery of precious metals from both wastes by arc furnace melting process was very high, which was up to in the range of 95~97%.

Review on Reprocessing Techniques for Mineral Wastes (광산폐기물의 재활용 기술 동향과 전망)

  • 최우진
    • Economic and Environmental Geology
    • /
    • v.37 no.1
    • /
    • pp.113-119
    • /
    • 2004
  • Mineral wastes are generated by the minerals, mining, and metal industries. These are generally inorganic waste streams of mainly waste rock or residues from refining during extraction of metals or minerals from the ore. There are many plants where minerals are recovered in secondany circuits, treating tailings, where the feed grades are much lower than would be economic on a mined ore. The world is now becoming aware of the finite nature of its resources at a price, and of the ever-increasing development costs of large new mines. Reprocessing of old tailings on a large scale must be worth examining very seriously by those with access to sufficient material of this type. In the present paper, mineral separation techniques to recover valuable metals and resources from the old tailings are reviewed, and new trends for future developments are also discussed.

Low Temperature Pyrolysis for the Recovery of Value-added Resources from Waste Wire (II) (폐전선으로부터 유가자원 회수를 위한 저온열분해(II))

  • Han, Seong-Kuk;Kim, Jae-Yong
    • Applied Chemistry for Engineering
    • /
    • v.20 no.5
    • /
    • pp.553-556
    • /
    • 2009
  • This research aims at the recovery of valuable resource and more efficient waste treatment through solving the problem of pyrolysis technique. At first, in order to raise the economical efficiency, the low temperature pyrolysis experiment was carried out at the temperature of $450^{\circ}C$, which is lower than the common pyrolysis temperature area ($500{\sim}1000^{\circ}C$). We could lower the reaction temperature and reduce the reaction time by using catalyst. Also we used indirect heat for the purpose of maintaining favorable anoxic condition. As a result, we could raise the recovery rate of the valuable copper and synthetic fuel oil. Furthermore, the by-products and flue gas could be treated more effectively as well. The flue gas passed through two stage neutralization tank, so that dioxin hardly occurs and other environment items are controlled fairly well to the environmental standard. Throughout this study, we produced the low temperature pyrolysis equipment (GTPK-001) as mentioned above, and we found out that the technique can be commercialized economically as well as environmentally friendly.

A Study on the Physical Separation Characteristics of Valuable Metals from the Waste Printed Wiring Boards (물리적 처리에 의한 폐 컴퓨터 기판으로부터 유가금속의 분리선별 특성 연구)

  • 현종영;채용배;정수복
    • Resources Recycling
    • /
    • v.11 no.1
    • /
    • pp.9-18
    • /
    • 2002
  • Printed wiring boards(PWBs) of the obsolete computers are composed of various organic and inorganic compounds as well as metals and alloys. As convinced that the valuable metals obtained from the PWBs are effectively utilized as secondary resources when recovered by economical methods, in this study, an investigation for characterizing the physical separation techniques is conducted. For the recovery of them, the sockets and chips dismantled from PWBs by scraping and residual resin boards are subjected to the appropriate separation processes according to the physical properties of each part. In the case of crushed socket scraps size ranged from -2.36 mm to +1.18 mm, approximately 97 wt% of the product obtained by magnetic separation consists of metallic compounds. In the case of chip scraps, 97% of Fe-Ni alloy and 95% of Cu metal are recovered by the combined process of air classification and dry magnetic separation in the size range from -2.36 mm to +0.15 mm. Ball milling is adopted in order to improve the removal efficiency of the thin-printed metallic materials on the residual resin boards and approximately 77% of Cu metal is recovered by zigzag separation after ball milling.