• 제목/요약/키워드: 유가금속회수

검색결과 124건 처리시간 0.02초

패턴전사 프린팅을 활용한 리튬이온 배터리 양극 기초소재 Li2CO3의 나노스케일 패턴화 방법 (Nanoscale Pattern Formation of Li2CO3 for Lithium-Ion Battery Anode Material by Pattern Transfer Printing)

  • 강영림;박태완;박은수;이정훈;왕제필;박운익
    • 마이크로전자및패키징학회지
    • /
    • 제27권4호
    • /
    • pp.83-89
    • /
    • 2020
  • 지난 수십년간 인류에게 핵심적인 에너지 자원이었던 화석연료가 갈수록 고갈되고 있고, 산업발전에 따른 오염이 심해지고 있는 환경을 보호하기 위한 노력의 일환으로, 친환경 이차전지, 수소발생 에너지 장치, 에너지 저장 시스템 등과 관련한 새로운 에너지 기술들이 개발되고 있다. 그 중에서도 리튬이온 배터리 (Lithium ion battery, LIB)는 높은 에너지 밀도와 긴 수명으로 인해, 대용량 배터리로 응용하기에 적합하고 산업적 응용이 가능한 차세대 에너지 장치로 여겨진다. 하지만, 친환경 전기 자동차, 드론 등 증가하는 배터리 시장을 고려할 때, 수명이 다한 이유로 어느 순간부터 많은 양의 배터리 폐기물이 쏟아져 나올 것으로 예상된다. 이를 대비하기 위해, 폐전지에서 리튬 및 각종 유가금속을 회수하는 공정개발이 요구되는 동시에, 이를 재활용할 수 있는 방안이 사회적으로 요구된다. 본 연구에서는, 폐전지의 재활용 전략소재 중 하나인, 리튬이온 배터리의 대표적 양극 소재 Li2CO3의 나노스케일 패턴 제조 방법을 소개하고자 한다. 우선, Li2CO3 분말을 진공 내 가압하여 성형하고, 고온 소결을 통하여 매우 순수한 Li2CO3 박막 증착용 3인치 스퍼터 타겟을 성공적으로 제작하였다. 해당 타겟을 스퍼터 장비에 장착하여, 나노 패턴전사 프린팅 공정을 이용하여 250 nm 선 폭을 갖는, 매우 잘 정렬된 Li2CO3 라인 패턴을 SiO2/Si 기판 위에 성공적으로 형성할 수 있었다. 뿐만 아니라, 패턴전사 프린팅 공정을 기반으로, 금속, 유리, 유연 고분자 기판, 그리고 굴곡진 고글의 표면에까지 Li2CO3 라인 패턴을 성공적으로 형성하였다. 해당 결과물은 향후, 배터리 소자에 사용되는 다양한 기능성 소재의 박막화에 응용될 것으로 기대되고, 특히 다양한 기판 위에서의 리튬이온 배터리 소자의 성능 향상에 도움이 될 것으로 기대된다.

폐알카리 망간전지로부터 황산을 이용한 유가금속 회수 (Recovery of Valuable Metals from Spent Alkaline Manganese Batteries using Sulfuric Acid)

  • 신선명;강진구;손정수;양동효
    • 공업화학
    • /
    • 제17권5호
    • /
    • pp.517-520
    • /
    • 2006
  • 망간산화물과 아연이 혼재되어 있는 폐알카리 망간전지로부터 황산용액에서 환원제로 과산화수소를 이용하여, 침출제 농도, 온도, 반응시간, 과산화수소의 양 등을 변화시키면서 망간과 아연의 침출거동을 조사하였다. 그 결과 고액농도 100 g/L, 황산농도 3.0 M, 반응온도 $60^{\circ}C$, 교반속도 200 r.p.m. 그리고 과산화수소를 첨가하지 않은 조건에서 아연과 망간의 침출율은 각각 97.7 %와 43.5 %를 나타내었으나, 반응온도 $60^{\circ}C$에서 과산화수소 30 mL를 첨가하였을 때는 아연과 망간의 침출율은 각각 99.6 %와 97.1%를 나타내어 환원제를 첨가하지 않은 조건보다 망간의 침출율이 약 2배 정도 증가하였다. 그러나 과산화수소 양이 30 mL 이상에서는 첨가되는 과산화수소의 양이 증가하여도 아연과 망간의 침출율의 변화는 거의 없었다.

소다배소(焙燒) 및 수침출법(水浸出法)에 의한 탈질용(脫窒用) 폐(廢) SCR 촉매(觸媒)로부터 바나듐과 텅스텐 침출(浸出) (Leaching of Vanadium and Tungsten from Spent SCR Catalysts for De-NOx by Soda Roasting and Water Leaching Method)

  • 김혜림;이진영;김준수
    • 자원리싸이클링
    • /
    • 제21권6호
    • /
    • pp.65-73
    • /
    • 2012
  • 탈질용 선택적 촉매 환원(SCR) 촉매는 화력발전소의 탈질 시스템에서 발생한다. 폐 SCR 촉매로부터 바나듐 및 텅스텐과 같은 유가금속을 회수하기 위한 공정은 소다배소 및 수침출 법으로 이루어진다. 본 연구에 사용된 폐 SCR 촉매는 $V_2O_5$ 1.23 %, $WO_3$ 7.73 %를 함유하고 있다. 소다배소 공정은 바나듐과 텅스텐 화합물을 수용성의 물질로 전환시켜 주는 역할을 하며, 실험은 $Na_2CO_3$ 첨가량 5 당량, 배소온도 $850^{\circ}C$, 배소시간 120 분, 폐촉매 입자크기 $54{\mu}m$의 조건에서 수행하였다. 소다배소 실험 이후 배소산물을 사용하여 수침출 실험을 수행하였다. 침출실험을 위한 배소산물은 $-45{\mu}m$의 입자크기로 분쇄하였으며, 수침출 실험조건은 침출온도 $40^{\circ}C$, 침출시간 30 분, 광액밀도 10 %이다. 소다배소 및 수침출 실험결과, 바나듐 46 %, 텅스텐 92%의 침출율을 얻었다.

SCR 폐촉매 침출액으로부터 용매추출법에 의한 유가금속의 추출 (Spent SCR Catalyst Leach Liquor Processed for Valuable Metals Extraction by Solvent Extraction Technique)

  • 아나 벨렌 쿠에바 솔라;전종혁;이진영;판카즈 쿠마 파리;라제쉬 쿠마 죠티
    • 자원리싸이클링
    • /
    • 제29권2호
    • /
    • pp.55-61
    • /
    • 2020
  • 선택적 촉매 환원법(SCR)은 여러 산업에서 질소산화물 (NOx)에 의한 대기오염을 줄일 수 있는 매우 유망한 기술이다. SCR 촉매의 소비는 기술이 발전함에 따라 매년 증가하고 있지만, 촉매의 수명은 제한되어 있으며, 일반적으로 수명이 다해 활성이 떨어진 폐촉매는 재활용 되지 않고 매립되어 처리되고 있다. 현재 가장 널리 사용되는 촉매는 V2O5-WO3/TiO2로 구성되어 있으며, 약 5%wt의 V2O5와 7-10%wt의 WO3를 함유하고 있다. 본 연구는 2차 공급원으로부터 유용 금속을 회수할 수 있는 기술개발에 대한 전세계적인 관심과, 다양한 분야에서의 바나듐 및 텅스텐의 수요에 대한 안정적인 공급을 대비하기 위한 기술개발을 바탕으로 한다. 추출 시간, pH 의존도 및 추출 농도에 대한 연구는 희석제 exxol D80에 추출제로 Aliquat 336을 사용하여 수행되었다. 두 금속의 최적 추출을 위한 조건은 약산성(~5.0) 영역에서 0.5mol/L의 Aliquat 336을 함유한 유기상과 30분 동안 추출 반응을 수행해야 하는 것으로 확인되었다. 또한 counter-McCabe-Thiele 분석으로부터 99%의 바나듐을 제거하기 위해 1단의 단수가 필요하고, 텅스텐의 추출을 위해 2단의 단수가 필요하였으며, 향류추출공정(counter-current simulations) 방식을 통한 이론적 접근의 적합성을 증명하였다.