• Title/Summary/Keyword: 유가금속회수

Search Result 125, Processing Time 0.036 seconds

Study on the Synchronous Recycling of EAF Dust and Waste PVC (폐PVC와 전기로 제강분진의 동시재활용을 위한 기초연구)

  • Lee GyeSeung;Song YuungJun
    • Resources Recycling
    • /
    • v.12 no.6
    • /
    • pp.47-56
    • /
    • 2003
  • PVC(polyvinyl chloride) powder were mixed with EAF(Electric Arc Furnace) dust and made as pellets. In order to recover the hydrochloride emitted from pyrolysis of PVC and the valuable metals in dust through making chlorides, pellets were roasted at $300 ^{\circ}C$ and investigated about the generation of chlorides. Two dust samples were collected at I steel making Co. and P Co. (called I dust and P dust respectively), which were mainly composed of zincite and franklinite. It was confirmed that about 50% of Zn in I dust and 48% of Zn in P dust compose zincite. The emission of HCl gas was completed in 15 min at 30$0^{\circ}C$ and the HCl mostly reacted with dust and made chlorides under 20% PVC mixed ratio. Because the reaction of HCl with zincite was faster than with franklinit, when generation and volatilization of ferric chloride is not allowed, the equivalent PVC powder mixed ratio in pellet depended on the amount of zincite in dust.

Selective Leaching of Vanadium and Nickel in Metal Oxides Obtained from Orimulsion Ash (오리멀젼회(灰)로부터 제조(製造)된 중간(中間) 생성물(生成物)로부터 바나듐과 니켈의 선택적(選擇的) 침출(浸出))

  • Kim, Eun-Young;Lee, Sung-Ki;Park, Kyung-Ho
    • Resources Recycling
    • /
    • v.15 no.6 s.74
    • /
    • pp.10-15
    • /
    • 2006
  • As a basic study on recovery of valuable metals such as vanadium and nickel from metal oxide obtained from waste orimulsion ash, we conducted selectively leaching of vanadium and nickel using $Na_2CO_3$ leaching and ammoniacal leaching, respectively. The 97% of vanadium was selectively leached at an optimum experimental condition, 50g/L $Na_2CO_3$, pulp density 50g/L, and 35% $H_2O_2$ 50ml/L, $25^{\circ}C$... for 1 hr, whereas no nickel was leached. In ammoniacal leaching study, 95% of nickel was selectively leached at the optimal experimental condition, $NH_4OH\;2M,\;(NH_4){_2}SO_4$ 1.5M, pulp density 50g/L, 25, for 4 hr along with 3% of vanadium.

A Basic Study for Treating E.A.F. Dust by use of Waste Tire (폐타이어를 이용한 제강분진 처리를 위한 기초연구)

  • 황용길;이상화;이성룡;정석수;최재신;조충형
    • Resources Recycling
    • /
    • v.4 no.4
    • /
    • pp.59-69
    • /
    • 1995
  • Distillation oI the dust generated during waste tue pyrolysis was perIomerl to rccover valuable metal sucll as zlnc. lead and iron. Pemcahilily and carnprcssivc tests were pursucd to ahlain the basic dala for cslraclian of zinc from the slntering propcrtp ol stccl making dusts and distilled carhon of waste tires as wcll as wastc pulp sludge mixlure hr~quet were investigated at various sinlcring lempcraturcs. Permeablllly rncieased with increastng amount of waste pulp in specil~cd istilled carhon due tn the fnrmat~ono f porusily in lhe sample TIE co~npress~vsctr ength showed the vanous values wlth different amDunl of dislilled-carhon adrlit~nilsa nd at diIIerenl sinlering tcmpcralures. X-ray diffifraction anvlyscs oI a hnquet rn~rhtre of steelmaking dusts(20Q didilled carhon and 10% waste pulp sblered ;>I SOOT) showcd thal the briquet consisted ot ZnO and Fc,O.,, hut was not found at the hriguet rintered at over 10OO'C. Crude zinc oxide sintered a1 IOOOC contained OZA Zn.

  • PDF

Melting of PCB scrap for the Extraction of Metallic Components (PCB스크랩으로부터 유가금속성분 회수를 위한 용융처리)

  • Kwon Eui-Hyuk;Jang Sung-Hwan;Han Jeong-Whan;Kim Byung-Su;Jeong Jin-Ki;Lee Jae-Chun
    • Korean Journal of Materials Research
    • /
    • v.15 no.1
    • /
    • pp.31-36
    • /
    • 2005
  • It is well known that PCB (Printed Circuit Board) is a complex mixture of various metals mixed with various types of plastics and ceramics. In this study, high temperature pyre-metallurgical process was investigated to extract valuable metallic components from the PCB scrap. For this purpose, PCB scrap was shredded and oxidized to remove plastic materials, and then, quantitative analyses were made. After the oxidation of the PCB scrap, $30.6wt\%SiO_2,\;19.3wt\%Al_2O_3\;and\;14wt{\%}CaO$ were analyzed as major oxides, and thereafter, a typical composition of $32wt\%SiO_2-20wt\%Al_2O_3-38wt{\%}CaO-10wt\%MgO$ was chosen as a basic slag system for the separation of metallic components. Moreover a size effect of crushed PCB scrap was also investigated. During experiments a high frequency induction furnace was used to melt and separate metallic components. As a result, it was found that the size of oxidized PCB scrap was needed to be less 0.9 m to make a homogeneous liquid slag and to recycle metallic components over $95\%$.

Commercialization of Ion Exchange Fiber System for Recovering Valuable Metals in Plating Wastewater (도금 폐수 중 유가 금속 회수를 위한 이온교환섬유의 상용화기술)

  • You, Seong-sik
    • Korean Chemical Engineering Research
    • /
    • v.55 no.4
    • /
    • pp.535-541
    • /
    • 2017
  • On the basis of 200 ppm of Ag and 120 l/h of feed flow rate, we built a pilot plant of an ion exchange fiber system having an double tube type ion exchange chamber with strong base ion exchange fiber (FIVAN A-6) which was designed to replace fibers easily and to eliminate the need for a fixture. The following results were obtained for the double tube type of ion exchange fiber system with an ion exchange capacity of 4.6 meq/g for Ag. The adsorption process was operated in the range of 40~90 l/h after confirming the effect of the flow rate and, pH did not affect formation of complex ion of Ag in the range of pH 7~12. In the case of backwash process, the recovery rate of Ag was tested in the range of 60~120 l/h and comparative experiments were carried out using NaOH, $NH_4Cl$, and NaCl as the chemicals for backwash. Although the desorption time was shortened at higher concentration, the desorption efficiency per mol was lowered. Therefore, it was confirmed that the desorption time and the concentration should be well balanced to operate economically. The desorption pattern of the backwash process is slower than the adsorption process and takes a lot of time. The results showed that the Ag adsorption ratio was 99.5% or more and the Ag recovery ratio was 96% or more, and commercialization was possible.

Separation of Valuable Metal from Waste Photovoltaic Ribbon through Extraction and Precipitation

  • Chen, Wei-Sheng;Chen, Yen-Jung;Yueh, Kai-Chieh
    • Resources Recycling
    • /
    • v.29 no.2
    • /
    • pp.69-77
    • /
    • 2020
  • With rapid increasing production and installation, recycling of photovoltaic modules has become the main issue. According to the research, the accumulation of waste modules will reach to 8600 tons in 2030. Moreover, Crystalline-silicon (c-Si) Photovoltaic modules account for more than 90% of the waste. C-Si PV modules contain 1.3% of weight of photovoltaic ribbon inside which contains the most of lead, tin and copper in the PV modules, which would cause environmental and humility problem. This study provided a valuable metal separation process for PV ribbons. Ribbons content 82.1% of Cu, 8.9% of Sn, 5.2% of Pb, and 3.1% of Ag. All of them were leached by 3M of hydrochloric acid in the optimal condition. Ag was halogenated to AgCl and precipitated. Cu ion was extracted and separated from Pb and Sn by Lix984N then stripped by 3M H2SO4. The effect of the optimal parameters of extraction was also studied in this essay. The maximum extraction efficiency of Cu ion was 99.64%. The separation condition of Pb and Sn were obtained by adjusting the pH value to 4 thought ammonia to precipitate and separate Pb and Sn. The recovery of Pb and Sn can reach 99%.

High-purity Lithium Carbonate Manufacturing Technology from the Secondary Battery Recycling Waste using D2EHPA + TBP Solvent (이차전지 폐액으로부터 D2EHPA + TBP solvent를 활용한 탄산리튬 제조기술)

  • Dipak Sen;Hee-Yul Yang;Se-Chul Hong
    • Resources Recycling
    • /
    • v.32 no.1
    • /
    • pp.21-32
    • /
    • 2023
  • Because the application of lithium has gradually increased for the production of lithium ion batteries (LIBs), more research studies about recycling using solvent extraction (SX) should focus on Li+ recovery from the waste solution obtained after the removal of the valuable metals nickel, cobalt and manganese (NCM). The raffinate obtained after the removal of NCM metal contains lithium ions and other impurities such as Na ions. In this study, we optimized a selective SX system using di-(2-ethylhexyl) phosphoric acid (D2EHPA) as the extractant and tri-n-butyl phosphate (TBP) as a modifier in kerosene for the recovery of lithium from a waste solution containing lithium and a high concentration of sodium (Li+ = 0.5 ~ 1 wt%, Na+ = 3 ~6.5 wt%). The extraction of lithium was tested in different solvent compositions and the most effective extraction occurred in the solution composed of 20% D2EHPA + 20% TBP + and 60% kerosene. In this SX system with added NaOH for saponification, more than 95% lithium was selectively extracted in four extraction steps using an organic to aqueous ratio of 5:1 and an equilibrium pH of 4 ~ 4.5. Additionally, most of the Na+ (92% by weight) remained in the raffinate. The extracted lithium is stripped using 8 wt% HCl to yield pure lithium chloride with negligible Na content. The lithium chloride is subsequently treated with high purity ammonium bicarbonate to afford lithium carbonate powder. Finally the lithium carbonate is washed with an adequate amount of water to remove trace amounts of sodium resulting in highly pure lithium carbonate powder (purity > 99.2%).

A Study on the Prior Leaching and Recovery of Lithium from the Spent LiFePO4 Cathode Powder Using Strong Organic Acid (강유기산을 이용한 폐LiFePO4 양극분말로부터 리튬의 선침출에 대한 연구)

  • Dae-Weon Kim;Soo-Hyun Ban;Hee-Seon Kim;Jun-Mo Ahn
    • Clean Technology
    • /
    • v.30 no.2
    • /
    • pp.105-112
    • /
    • 2024
  • Globally, the demand for electric vehicles has surged due to greenhouse gas regulations related to climate change, leading to an increase in the production of used batteries as a consequence of the battery life issue. This study aims to selectively leach and recover valuable metal lithium from the cathode material of spent LFP (LiFePO4) batteries among lithium-ion batteries. Generally, the use of inorganic acids results in the emission of toxic gases or the generation of large quantities of wastewater, causing environmental issues. To address this, research is being conducted to leach lithium using organic acids and other leaching agents. In this study, selective leaching was performed using the organic acid methane sulfonic acid (MSA, CH3SO3H). Experiments were conducted to determine the optimal conditions for selectively leaching lithium by varying the MSA concentration, pulp density, and hydrogen peroxide dosage. The results of this study showed that lithium was leached at approximately 100%, while iron and phosphorus components were leached at about 1%, verifying the leaching efficiency and the leaching rates of the main components under different variables.

Study of Conversion of Waste LFP Battery into Soluble Lithium through Heat Treatment and Mechanochemical Treatment (열처리 및 기계화학적 처리를 통한 폐LFP 배터리로부터 가용성 리튬으로의 전환 연구)

  • Boram Kim;Hee-Seon Kim;Dae-Weon Kim
    • Resources Recycling
    • /
    • v.33 no.3
    • /
    • pp.21-29
    • /
    • 2024
  • Globally, the demand for electric vehicles (EVs) is surging due to carbon-neutral strategies aimed at decarbonization. Consequently, the demand for lithium-ion batteries, which are essential components of EVs, is also rising, leading to an increase in the generation of spent batteries. This has prompted research into the recycling of spent batteries to recover valuable metals. In this study, we aimed to selectively leach and recover lithium from the cathode material of spent LFP batteries. To enhance the reaction surface area and reactivity, the binder in the cathode material powder was removed, and the material was subjected to heat treatment in both atmospheric and nitrogen environments across various temperature ranges. This was followed by a mechanochemical process for aqueous leaching. Initially, after heat treatment, the powder was converted into a soluble lithium compound using sodium persulfate (Na2S2O8) in a mechanochemical reaction. Subsequently, aqueous leaching was performed using distilled water. This study confirmed the changes in the characteristics of the cathode material powder due to heat treatment. The final heat treatment in a nitrogen atmosphere resulted in a lithium leaching efficiency of approximately 100% across all temperature ranges.

Disassembly and Compositional Analysis of Waste LCD Displays (폐(廢) 디스플레이의 해체(解體) 및 성분조사(成分調査))

  • Lee, Sungkyu;Kang, Leeseung;Lee, Chan Gi;Hong, Myung Hwan;Cho, Sung-Su;Hong, Hyun Seon
    • Resources Recycling
    • /
    • v.22 no.2
    • /
    • pp.29-36
    • /
    • 2013
  • Although Korean domestic production of flat panel displays totalled more than 48 trillion KRW in 2007, most of the flat panel display wastes have been land-filled or incinerated, which greatly overshadows Korean national prestige as a world leading producer and developer of flat panel display devices. Countries such as Japan or EU possess quite limited land-fill capability and have sought ways to dispose of WEEEs from environment-friendly perspective rather than recovery of valuable materials from the wastes. Considering relatively short cycle of about 5 years for flat panel display devices, it is estimated that more than 5 million units will be accumulated as wastes by 2015. Urban mining is a most suitable countermeasures against China's monopoly of rare and rare earth metals, which are contained in flat panel display wastes. Therefore, materials recycling of waste LCD units has to be developed and commercialized soon enough for economic and environment-friendly recovery of valuable resources hidden in LCD wastes.