• Title/Summary/Keyword: 윌킨슨 전력분배기

Search Result 31, Processing Time 0.024 seconds

An ultra-compact Wilkinson power divider MMIC with an improved isolation characteristic employing RCR design method (RCR 삽입법에 의해 설계된 높은 절연특성을 가지는 초소형 MMIC용 윌킨슨 전력분배기)

  • Yun, Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.1
    • /
    • pp.105-113
    • /
    • 2013
  • In this work, using a ${\pi}$-type multiple coupled microstrip line structure (MCMLS) and RCR (Resistor Capacitor Resistor) structure, we fabricated ultra-compact and high isolation Wilkinson power divider on GaAs MMIC (Monolithic Microwave Integrated Circuit). The line length of the Wilkinson power divider was reduced to about ${\lambda}$/46, and its size was 0.304 [$mm^2$], which is 12.1 % of conventional one. Compared with conventional Wilkinson power divider, isolation characteristic of the proposed Wilkinson power divider was highly improved by using RCR insertion method. The proposed Wilkinson power divider showed good RF performances in C/X band.

Design of Wilkinson Power Divider for nth Harmonic Suppression (고조파 제거 기능을 갖는 윌킨슨 전력분배기의 설계)

  • Kim, Jong-Sung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.1
    • /
    • pp.42-46
    • /
    • 2014
  • A modified network to suppress the nth harmonics in a Wilkinson power divider is presented. The solution has been found by adding transmission lines, whose electrical lengths are determined by using the suppression terms, between two transformers of the traditional design. Experimental results show the second and third harmonics levels achieved are -45.3 and -46.4 dB, respectively, while the performance of the power divider at the fundamental frequency is maintained.

Modified Wilkinson Power Divider for nth Harmonic Suppression (고조파 제거 기능을 갖는 윌킨슨 전력분배기의 설계)

  • Kim, Jong-Sung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.1
    • /
    • pp.46-50
    • /
    • 2013
  • A modified design that can reject the nth harmonic components in the Wilkinson power divider is presented. After adding transmission lines of electrical lengths determined by suppression terms between two transformers of the traditional design, a solution of the modified Wilkinson divider can be found. Experimental results show the second and third harmonic suppression to be -45.3 dB and -46.4 dB, respectively, while maintaining the conventional performance at the fundamental frequency.

A study on the design of a Milimeterwave-Band 2:1 Unequal Wilkinson Power Divider Using DGS (DGS를 이용한 밀리미터 대역의 2:1 비대칭 윌킨슨 전력분배기 설계에 관한 연구)

  • Kim Dong-Joo;Ahn Dal
    • Proceedings of the KAIS Fall Conference
    • /
    • 2004.06a
    • /
    • pp.115-118
    • /
    • 2004
  • 본 논문에서는 DGS를 이용한 밀리미터대역의 2:1 비대칭 윌킨슨 전력분배기를 설계하였다. DSG(Defected Ground Structure)의 전파지연특성과 전송선로의 높은 임피던스 특성을 이용하여 전력분배기의 크기감소와 구현의 용이성을 실현하였다. 본 논문에서 설계한 전력분배기는 MEMS 기술로 제작이 가능하며 시뮬레이션 결과를 통하여 제시된 설계방법의 타당성을 입증하였다.

  • PDF

A Study of Highly Miniaturized On-Chip Wilkinson Power Divider Employing Periodic Strip Structure for Application to Silicon RFIC (실리콘 RFIC상에 주기적 스트립 구조를 이용한 초소형 온칩용 윌킨슨 전력분배기 개발에 관한 연구)

  • Ju, Jeong-Gab;Yun, Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.4
    • /
    • pp.540-546
    • /
    • 2010
  • In this study, using a coplanar waveguide employing Periodic Strip Structure (PSS), highly miniaturized on-chip wilkinson power divider was realized on Si radio frequency integrated circuit (RFIC). The wilkinson power divider exhibited good RF performances from 25 to 50 GHz, and its size was $0.44{\times}0.1mm^2$, which is 4.8 % of conventional one. We also investigated the RF performances of various structures employing PSS.

Design of Size Reduced Wilkinson Power Divider Using Substrate Integrated Artificial Dielectric (SIAD) (적층형 가유전체 구조를 이용한 소형화된 윌킨슨 전력분배기의 설계)

  • Koo, Ja-Kyung;Lim, Jong-Sik;Ahn, Dal
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.05a
    • /
    • pp.300-302
    • /
    • 2009
  • 적층형 가유전체 구조는 유효유전율과 유효투자율은 주어진 표준형 전송선로의 경우보다 증가하므로 결과적으로 전송선로의 길이를 짧게 할 수 있는 장점이 있다. 따라서 회로의 소형화에 유용하게 사용될 수 있는데, 본 논문에서는 한 예로써 대표적인 무선 회로인 윌킨슨 전력분배기의 소형화된 회로에 대하여 기술하고 있다. 표준형 회로와 적층형 가유전체 구조를 이용하여 소형화한 윌킨슨 전력분배기를 2GHz 대역에서 설계하여 실제로 제작하여 측정한 결과를 제시한다. 종래의 표준형 회로와 비교할 때, 동일한 성능을 유지하면서도 회로의 크기가 32%만큼 감소한 결과가 소개된다.

  • PDF

Bandwidth Broadening for the GPS Microstrip Patch Antenna (GPS용 마이크로스트립 패치안테나의 광대역화)

  • Son, Taeho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.14 no.4
    • /
    • pp.73-79
    • /
    • 2015
  • Enhanced bandwidths of the GPS microstrip patch antennas applied by a Wilkinson power divider and a quadrature hybrid were compared. The square patch was designed, and fed by the two port probes for the circuit application. The Wilkinson power divider and quadrature hybrid circuit were designed, and applied to the patch antenna. The designed patch and two circuits were implemented on the FR4 board, and combined together. The measurement of the bandwidth within a voltage standing wave ratio (VSWR) of 2: 1 were 36.5% (1,200~1,775 MHz) in the case of the Wilkinson power divider and 29.84% (1,230~1,700 MHz) in the case of the quadrature hybrid. Axial ratios (AR) in 3dB were 17.14% bandwidth (1,360~1,630 MHz) and 15.87% bandwidth (1,400~1,650 MHz), respectively. The application of the Wilkinson power divider is wider than that of the quadrature hybrid. The peak gains in the anechoic chamber at the GPS center frequency were measured as 2.84 dBi and 2.75 dBi, respectively.

Design of 4-Way Wilkinson Divider with Waveguide to Stripline Transition Used in The Monopulse Radar Front-end (도파관 천이 구조를 갖는 모노펄스 레이더용 4-Way 윌킨슨 분배기 설계)

  • Koh, Young-Mok;Ra, Keuk-Hwan
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.11
    • /
    • pp.69-76
    • /
    • 2010
  • From the present paper we researched about the design of 4-Way Wilkinson divider with waveguide to stripline transition which used to split the LO signal with equi-amplitude and equi-phase in the X-Band Monopulse radar RF front-end. The monopulse radar front end operating in the X-Band is composed of 3 waveguide reception mixers which down convert sum, azimuth and elevation signal to IF and one SSB waveguide mixers which generate X-Band test signal. It is required the 4-way divider with low loss, equi amplitude and equiphase splitting the LO signal to provide the LO signal to each mixer consisting RF frontend. In this paper we designed and fabricated the 4-Way Wilkinson divider with waveguide transition to divide the LO signal into equi-amplitude and equi-phase. The fabricated Wilkinson divider have the insertion loss 6.8dB, VSWR 1.06~1.28, and phase balance maximum 4.5degree for each output ports.

Design of Miniaturized Wilkinson Power Divider Using Substrate Integrated Artificial Dielectric (기판적층형 가유전체를 이용한 소형화된 윌킨슨 전력분배기 설계)

  • Koo, Ja-Kyung;Lim, Jong-Sik;Ahn, Dal
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.7
    • /
    • pp.1542-1548
    • /
    • 2009
  • This paper describes a size-reduced Wilkinson power divider using substrate integrated artificial dielectric(SIAD). SIAD transmission lines have increased effective refractive index, so the line width and length are reduced from those of standard transmission lines. Therefore the "size-reduction effect" is achieved if SIAD lines are applied to high frequency circuits. An efficient simulation method is proposed for SIAD lines which have an enormous number of via-holes. A 2GHz Wilkinson power divider is designed and measured using SIAD transmission line as an example of application. The size of the fabricated divider is reduced by 32% due to the increased effective refractive index of SIAD, while the performances are maintained similarly.

Unequal Dual-band Wilkinson Power Divider (비대칭 이중대역 전력분배기)

  • Kim, Byung-Chul;Lee, Soo-Jung;Kim, Young
    • Journal of Digital Convergence
    • /
    • v.12 no.4
    • /
    • pp.343-348
    • /
    • 2014
  • This paper suggested a theoretical approach and an implementation for the design of an unequal Wilkinson power divider with a high dividing ratio operating at two-frequencies. The T-section transmission lines and the two-section of Monzon's theory are proposed to operate a dual-band application. To achieve the high dividing ratio divider, the high impedance line using a T-shaped structure and low impedance lines with periodic shunt open stubs are implemented. For the validation of this divider, a dual-band power divider with a high dividing ratio of 5 is simulated and measured at 1 GHz and 2 GHz. The measured performances of the divider are in good agreements with simulation results.