• 제목/요약/키워드: 윈도우 PE 포맷 악성코드 탐지

검색결과 2건 처리시간 0.019초

윈도우 PE 포맷 바이너리 데이터를 활용한 Bidirectional LSTM 기반 경량 악성코드 탐지모델 (Bidirectional LSTM based light-weighted malware detection model using Windows PE format binary data)

  • 박광연;이수진
    • 인터넷정보학회논문지
    • /
    • 제23권1호
    • /
    • pp.87-93
    • /
    • 2022
  • 군(軍) PC의 99%는 윈도우 운영체제를 사용하고 있어 안전한 국방사이버공간을 유지하기 위해서는 윈도우 기반 악성코드의 탐지 및 대응이 상당히 중요하다. 본 연구에서는 윈도우 PE(Portable Executable) 포맷의 악성코드를 탐지할 수 있는 모델을 제안한다. 탐지모델을 구축함에 있어서는 탐지의 정확도보다는 급증하는 악성코드에 효율적으로 대처하기 위한 탐지모델의 신속한 업데이트에 중점을 두었다. 이에 학습 속도를 향상시키기 위해 복잡한 전처리 과정 없이 최소한의 시퀀스 데이터만으로도 악성코드 탐지가 가능한 Bidirectional LSTM(Long Short Term Memory) 네트워크를 기반으로 탐지모델을 설계하였다. 실험은 EMBER2018 데이터셋을 활용하여 진행하였으며, 3가지의 시퀀스 데이터(Byte-Entropy Histogram, Byte Histogram, String Distribution)로 구성된 특성 집합을 모델에 학습시킨 결과 90.79%의 Accuracy를 달성하였다. 한편, 학습 소요시간은 기존 탐지모델 대비 1/4로 단축되어 급증하는 신종 악성코드에 대응하기 위한 탐지모델의 신속한 업데이트가 가능함을 확인하였다.

N-grams를 사용한 CNN 기반의 악성코드탐지 기법 연구 (Malware Detection Based on CNN with N-grams)

  • 허정원;문봉교
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2020년도 춘계학술발표대회
    • /
    • pp.431-434
    • /
    • 2020
  • 본 논문에서는 악성코드탐지 기법으로 n-grams를 사용한 특징 추출을 통해 이미지 인식 분야에서 널리 쓰이는 Convolutional Neural Network로 학습하는 프레임워크를 제안한다. 윈도우즈 실행 파일의 PE 포맷에서 특징을 추출하여 6-grams 확률을 구하고 grayscale 을 통해 이미지로 변환한다. 이것을 기존에 연구된 탐지방법과 비교하여 우수함을 보인다. 학습에 사용된 데이터는 총 55,000개로 5-folds 교차검증을 하였으며 예측 정확도는 98.87%였다.