• Title/Summary/Keyword: 위치추정 기술

Search Result 737, Processing Time 0.026 seconds

LBS 측위기술

  • 양철관;심덕선
    • 전기의세계
    • /
    • v.53 no.5
    • /
    • pp.34-40
    • /
    • 2004
  • 이동통신네트워크에서 위치기반서비스(LBS : Location Based Service)의 중요성이 증대되고 있다. 이러한 LBS는 모바일 사용자의 위치를 추정하고 추정한 위치와 관련된 다양한 정보 서비스를 제공하기 위한 기술로서 휴대 단말의 위치를 파악하는 위치측위기술, LBS 서버기술 그리고 다양한 LBS 응용기술 등으로 구분될 수 있다. 위치측위기술은 위치정보의 정확도에 따라서 제공되는 서비스의 종류와 질이 달라지므로 보다 정밀한 위치정보의 추적이 가능한 고정밀 측위 기술은 개인화 서비스를 위한 필수조건이다.(중략)

  • PDF

Wi-Fi 기반 실내 위치추정 기술개발 동향

  • Ji, Myeong-In;Jo, Yeong-Su;Park, Sang-Jun;Im, Dong-Seon
    • Information and Communications Magazine
    • /
    • v.28 no.7
    • /
    • pp.52-58
    • /
    • 2011
  • 최근 GPS와 Wi-Fi가 내장된 스마트폰의 보급으로 이를 활용한 위치기반서비스 (Location-based Service)가 각광을 받고 있다. 이를 통해 GPS를 이용한 실외 위치추정 및 항법서비스뿐만 아니라 실내에서도 Wi-Fi 신호를 이용하여 사용자의 위치를 추정하고 다양한 서비스를 제공받을 수 있게 되었다. 본 논문에서는 Wi-Fi를 이용한 실내 위치추정 기술의 기본원리에 대해 살펴보고, 이를 활용한 기술의 동향을 소개하고자 한다.

Location Estimation Technique Based on TOA and TDOA Using Repeater (중계기를 이용한 TOA 및 TDOA 기반의 위치추정 기법)

  • Jeon, Seul-Bi;Hwang, Suk-Seung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.4
    • /
    • pp.571-576
    • /
    • 2022
  • Due to the epochal development of the unmanned technology, the importance of LDT(: Location Detection Technology), which accurately estimates the location of a user or object, is dramatically increased. TOA(: Time of Arrival), which calculates a location by measuring the arrival time of signals, and TDOA(: Time Difference of Arrival) which calculates it by measuring the difference between two arrival times, are representative LDT methods. Based on the signals received from three or more base stations, TOA calculates an intersection point by drawing circles and TDOA calculates it by drawing hyperbolas. In order to improve the radio shadow area problem, a huge number of repeaters have been installed in the urban area, but the signals received through these repeaters may cause the serious error for estimating a location. In this paper, we propose an efficient location estimation technique using the signal received through the repeater. The proposed approach estimates the location of MS(: Mobile Station) employing TOA and TDOA methods, based on signals received from one repeater and two BS(: Base Station)s.

A Study on Positioning Error according to Signal Sampling Rate in TDOA Positioning System (TDOA 위치 추정 시스템에서의 신호 샘플링 속도에 따른 위치 오차에 관한 연구)

  • Oh, Jongtaek
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.6
    • /
    • pp.191-196
    • /
    • 2016
  • A development on the indoor positioning technologies and services has been proceeded very actively. Among the several positioning technologies, the TDOA(Time Difference of Arrival) technology using acoustic signal has the best positioning performance. Because so many people use their own smartphones, the location of the smartphone is important, and the TDOA technology should be employed to use the acoustic signal for the positioning. For the digital signal processing with the acoustic signal, the signal should be sampled, and as the sampling rate increases, the positioning accuracy could be improved instead of processing time burden. In this paper, the position estimation error according to the sampling rate is analyzed, and the appropriate sampling rate for the positioning system is proposed.

Beacon Node Based Localization Algorithm Using Received Signal Strength(RSS) and Path Loss Calibration for Wireless Sensor Networks (무선 센서 네트워크에서 수신신호세기와 전력손실지수 추정을 활용하는 비콘 노드 기반의 위치 추정 기법)

  • Kang, Hyung-Seo;Koo, In-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.1
    • /
    • pp.15-21
    • /
    • 2011
  • In the range-based localization, the localization accuracy will be high dependent on the accuracy of distance measurement between two nodes. The received signal strength(RSS) is one of the simplest methods of distance measurement, and can be easily implemented in a ranging-based method. However, a RSS-based localization scheme has few problems. One problem is that the signal in the communication channel is affected by many factors such as fading, shadowing, obstacle, and etc, which makes the error of distance measurement occur and the localization accuracy of sensor node be low. The other problem is that the sensor node estimates its location for itself in most cases of the RSS-based localization schemes, which makes the sensor network life time be reduced due to the battery limit of sensor nodes. Since beacon nodes usually have more resources than sensor nodes in terms of computation ability and battery, the beacon node based localization scheme can expand the life time of the sensor network. In this paper, therefore we propose a beacon node based localization algorithm using received signal strength(RSS) and path loss calibration in order to overcome the aforementioned problems. Through simulations, we prove the efficiency of the proposed scheme.

Implementation of the outdoor location tracking system by using Zigbee (Zigbee를 이용한 실외 위치추정 시스템 구현)

  • Kim, Hwan-Yong;Lim, Soon-Ja
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.1
    • /
    • pp.306-310
    • /
    • 2012
  • Location tracking system represents position by searching objects and humans. In this paper I would like to write about RF chip support Zigbee which is called CC2420. In simulated network circumstance, we can get the information about mobile-node by sending it to sink-node. Position finding is in error by 3m at outdoor environment. The error scale is acceptable within easy range of naked eyes. It can be overcome by using GPS information and Google maps with the wireless networking background.

A Study on the Compensating of the Dead-reckoning Based on SLAM Using the Inertial Sensor (관성센서를 이용한 SLAM 기반의 위치 오차 보정 기법에 관한 연구)

  • Kang, Shin-Hyuk;Jang, Mun-Suck;Lee, Dong-Kwang;Lee, Eung-Hyuk
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.2
    • /
    • pp.28-35
    • /
    • 2009
  • Positioning technology which a part technology of Mobile Robot is an essential technology to locate the position of Robot and navigate to wanted position. The Robot that based on wheel drive uses Odometry position. technology. But when using Odometry positioning technology, it's hard to find out constant error value because a slip phenomenon occurs as the Robot runs. In this paper, we present the way to minimize positioning error by using Odometry and Inertial sensor. Also, the way to reduce error with Inertial sensor on SLAM using image will be shown, too.

Development of Slowly moving Short Baseline Underwater Acoustic Positioning System for Estimating the Position of Unmanned Underwater Vehicle (무인잠수정의 위치추정을 위한 동적단기선 방식의 수중초음파 위치추적시스템 개발)

  • Kim, Joon-Young;Byun, Seung-Woo
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.05a
    • /
    • pp.240-243
    • /
    • 2009
  • 본 논문에서는 수중에서 이동하는 무인잠수정 및 수중이동체의 위치를 측정하는 방법 중의 하나인 동적 단기선 방식(SBL)에 의한 무인잠수정의 위치측정에 대한 방법을 하이드로폰과 DAQ(Data Aquisition) 시스템을 이용하여 수조에서 테스트를 수행하였고, 실 해역에서의 실험을 실시하였다. 실험을 위해서 4개의 센서가 수조의 벽면에 고정이 되어 있으며, 이동체와 고정된 4개의 센서가 신호를 송수신함으로써 상호간의 위치추적이 가능하게 하는 시뮬레이션을 실시하였으며, 제안하는 SBL시스템과 장기선 방식(Long baseline)을 비교하기위한 시뮬레이션을 실시하여 두 시스템을 비교하였다. 측정된 신호는 DAQ 시스템을 이용하여 데이터를 취득하였고, Labview 프로그램을 이용하여 실시간으로 무인잠수정의 위치를 추정하였다. 위치추정에 사용된 알고리즘은 삼각측량법에 의한 방법을 사용하였으며, X, Y방향에 대해서는 비교적 오차가 적은 추정 결과를 나타내었으나 Z방향에 대하여서는 큰 오차를 보여 데이터로 사용할 수 가 없었다. 이는 수중이동체의 수심측정 센서를 이용하여 보완할 수 있을 것으로 본다. 향후 연구로는 위치추정 알고리즘을 보완하여 실제 선박 선저부에 센서가 부착되었을 경우에 대한 적용연구를 진행할 예정이며, 위치추정 알고리즘을 발전시켜 3차원에서의 정확한 위치 추적을 가능하게 할 예정이다.

  • PDF

Development of Underwater Positioning System using Asynchronous Sensors Fusion for Underwater Construction Structures (비동기식 센서 융합을 이용한 수중 구조물 부착형 수중 위치 인식 시스템 개발)

  • Oh, Ji-Youn;Shin, Changjoo;Baek, Seungjae;Jang, In Sung;Jeong, Sang Ki;Seo, Jungmin;Lee, Hwajun;Choi, Jae Ho;Won, Sung Gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.352-361
    • /
    • 2021
  • An underwater positioning method that can be applied to structures for underwater construction is being developed at the Korea Institute of Ocean Science and Technology. The method uses an extended Kalman filter (EKF) based on an inertial navigation system for precise and continuous position estimation. The observation matrix was configured to be variable in order to apply asynchronous measured sensor data in the correction step of the EKF. A Doppler velocity logger (DVL) can acquire signals only when attached to the bottom of an underwater structure, and it is difficult to install and recover. Therefore, a complex sensor device for underwater structure attachment was developed without a DVL in consideration of an underwater construction environment, installation location, system operation convenience, etc.. Its performance was verified through a water tank test. The results are the measured underwater position using an ultra-short baseline, the estimated position using only a position vector, and the estimated position using position/velocity vectors. The results were compared and evaluated using the circular error probability (CEP). As a result, the CEP of the USBL alone was 0.02 m, the CEP of the position estimation with only the position vector corrected was 3.76 m, and the CEP of the position estimation with the position and velocity vectors corrected was 0.06 m. Through this research, it was confirmed that stable underwater positioning can be carried out using asynchronous sensors without a DVL.

Target Localization for DIFAR Sonobuoy compensated Bearing Estimation and Sonobuoy Position Error (방위각 추정 및 소노부이 위치 오차를 보상한 DIFAR 소노부이의 표적 위치 추정 성능 향상 기법)

  • Gwak, Sang-Yell
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.221-228
    • /
    • 2020
  • A sonobuoy is dropped onto the surface of water to estimate the bearing of an underwater target. A Directional Frequency Analysis and Recording (DIFAR) sonobuoy has an error in the specific angular section due to the method of estimating bearing and noise, which causes an error in target localization using multiple sonobuoys. In addition, the position of the sonobuoy continues to move, but since a sonobuoy with a GPS is intermittently arranged, it is difficult to estimate the exact position of the sonobuoy. This also causes target localization performance degradation. In this paper, we propose a technique to improve the target localization performance by compensating for bearing errors using characteristics of the DIFAR sonobuoy and multiple-sonobuoy position errors based on the intermittently arranged active sonobuoy with a GPS.