• Title/Summary/Keyword: 위치선정기법

Search Result 445, Processing Time 0.043 seconds

Analytical Performance Comparison of Scour Protection of Rubble Mound Structure Shape using Simulation (해석적 모의조파실험을 이용한 해안사석구조물 형상에 따른 해저면 세굴 방지 성능 비교)

  • Kang, Kyoung-Won;Kim, Kee Dong;Han, Tong-Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.2A
    • /
    • pp.117-122
    • /
    • 2012
  • Coastal structures, constructed for preventing coastal slope erosion, often causes the scour on the boundary between the coastal structure and the sea-bed, which might lead to collapse of coastal structures. To prevent the collapse, the usual upright block type coastal structures can be modified to other forms or systems of coastal structures. To validate the performance of the proposed systems, it is necessary to conduct high cost hydraulic experiments. If numerical modeling can be performed prior to the hydraulic experiments and the performance of the proposed systems is analyzed numerically in advance, the expenses can be reduced significantly by optimizing the number of cases for conducting the experiments. In this study, a fluid-structure interaction analysis procedure is proposed for modeling the hydraulic experiments of costal structures using the finite element package, LS-DYNA. As can be found in the usual hydraulic experiments, fluid velocities of potential scour locations are monitored and analyzed in detail for four types of coastal structures, block, step, trapezoid and rubble mound.

Future Projection and Analysis of Water Resources on Megacity in Asian Monsoon Region (아시아 몬순지역 메가시티의 미래 수자원 전망 및 분석)

  • Kim, Jeong-Bae;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.77-77
    • /
    • 2017
  • 전 세계적인 인구증가와 도시화로 메가시티가 점차 증가하고 있으며, 2016년 기준 37개의 메가시티 중 60% 이상(23개)이 아시아 지역에 집중되어 있다. 통상, 메가시티는 불투수율이 높고 인구가 밀집되어 있어 수재해로 인한 피해규모가 크며, 인구증가에 따른 용수부족 및 수질악화로 인해 수자원 확보가 어렵다. 특히, 아시아 지역은 몬순의 영향으로 수자원의 변동성이 크며, 최근 기후시스템의 변화는 몬순의 시 공간적 변동을 증대시킬 것으로 전망된다. 즉, 아시아 몬순지역에 위치하는 메가시티는 기후변화에 더욱 취약하며 이에 따른 수자원 확보 및 수자원 관리의 어려움은 더욱 가중될 것으로 예상된다. 본 연구에서는 AR5 기후변화 시나리오를 활용하여 아시아 몬순지역 내 메가시티를 대상으로 미래기간에 대한 기온, 강수량, 유출량을 전망하고 그 특성을 분석하고자 한다. 국가별 인구 통계자료를 기반으로 아시아 몬순지역 내 존재하는 19개 메가시티를 선정하였다. 기후전망을 위해 테일러 다이어그램을 활용하여 GCMs의 몬순모의 성능을 평가하였으며, 아시아 몬순특성을 잘 반영하는 다수의 GCMs을 선정하였다. 아시아 메가시티를 평가하고자 이중선형보간기법(Bilinear method)을 적용하여 $0.5^{\circ}$ 간격의 공간해상도로 상세화하였으며, Delta method를 이용하여 편의보정을 수행하였다. GCM 모의자료의 편의를 산정하기 위해 APHRODITE의 일단위 강수자료를 이용하였으며, VIC (Variable Infiltration Capacity) 모형을 이용하여 유출량 분석을 수행하였다. 평가결과 각 메가시티의 평균기온, 강수 및 유출량이 모든 미래기간 2020s, 2050s, 2080s에서 다르게 나타났다. 해안/내륙, 경 위도 등 메가시티의 지리적 위치에 따른 변화특성 분석을 수행하였으며, 각 메가시티에 대한 여름 및 겨울철 몬순의 변화 특성을 분석하였다.

  • PDF

A study on the application of LSMS object-oriented classification based on GIS (GIS 기반 LSMS 객체지향 분류 적용 연구)

  • Han Yong Lee;Jong Woo Jung;Hye Won Jeong;Chung Dea Lee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.408-408
    • /
    • 2023
  • 하천공간은 하도, 사주, 식생, 하천구조물 등에 대한 특성을 지니고 있으며, 현장조사를 통해 하천공간에 대한 자료를 분석하여 기초자료를 생산한다. 기존에는 현장에서 육안조사나 지상에서 사진촬영, 스케치방법으로 하천공간특성에 대한 조사를 수행하였으나, 지상에서 조사한 자료은 하천특성에 대한 물리적·공간적 특성을 파악하기 어렵고 자료의 활용성이 낮은 한계점이 존재한다. 이와 같은 한계를 극복하기 위해 GIS 및 RS 기술을 활용한 고도화된 첨단조사 기술 및 장비가 도입되어 활용되고 있다. 본 연구에서는 하천공간특성을 GIS 기반으로 객체지향 분류 적용 연구와 분류 항목에 따른 공간분석 연구를 수행하였다. 연구를 위한 대상지역은 섬진강권역의 지석천 유역 하류부에 위치하고 있는 지석천 친수공원을 대상으로 선정하였다. 대상지역의 고해상도 항공영상을 수집 및 정합한 후 QGIS에서 제공하는 Orfeo ToolBox(OTB)의 LSMS(Large Scale Mean-Shift) 기법으로 정합한 항공영상의 객체지향 영상분할을 실시하여 벡터 레이어를 생성하였고, 하천공간특성에 따른 항목을 선정하여 각 항목의 영역에 대한 선별을 통해 훈련데이터를 생성하였다. 훈련데이터는 랜덤 포레스트를 이용하여 각 항목에 대한 자동 분류를 확인하였으며, 하천공간특성의 정량적 평가를 위해 분류된 각 항목별 공간분석을 통해 면적, 위치정보(위도, 경도, 표고)를 산정하였다. 분석 결과, 하천공간특성을 GIS 기반의 벡터 레이어와 각 항목에 대한 정량적 분석을 통해 하천공간의 DB를 구축하였다. 이와 같이 하천공간 DB 구축을 통해 전국 하천관리체계를 위한 기초자료를 구축하고자 하였다.

  • PDF

A Construction of Integrated Binding Service of The Selected Objects Considering Loads in Wide-Area Object Computing Environments (광역 객체 컴퓨팅 환경에서 부하를 고려한 선정된 객체의 통합 바인딩 서비스의 구축)

  • Kang, Myung-Suk;Jeong, Chang-Won;Joo, Su-Chong
    • Annual Conference of KIPS
    • /
    • 2002.11b
    • /
    • pp.1487-1490
    • /
    • 2002
  • 최근 분산 컴퓨팅 환경은 급진적으로 광역화되고, 이질적이며, 연합형태의 광역 시스템 구조로 변화하고 있다. 이러한 환경은 네트워크상에 광범위한 서비스를 제공하는 통신 네트워크 기반에서 구현된 수많은 객체로 구성된다. 더욱, 지구상에 존재하는 모든 객체들은 이름이나 속성에 의해 중복된 특성을 갖는다. 이러한 같은 특성을 갖는 객체들은 중복 객체로 정의된다. 그러나 기존의 네이밍이나 트레이딩 메커니즘은 독립적인 위치 투명성이 결여로 중복된 객체들의 바인딩 서비스 지원이 불가능하다. 서로 다른 시스템 상에 존재하는 중복된 객체들이 동일한 서비스를 제공한다면, 각 시스템의 부하를 고려하여 클라이언트의 요청을 분산시킬 수 있다. 이러한 이유로 본 논문에서는 광역 컴퓨팅 환경에서 중복된 객체들의 위치 관리뿐만 아니라 시스템들간의 부하 균형화를 유지하기 위해서 최소부하를 갖는 시스템에 위치한 객체의 선정하여 동적 바인딩 서비스를 제공할 수 있는 새로운 모델을 설계하고 구현하였다. 이 모델은 네이밍 및 트래이딩 기능을 통합한 서비스에 의해 중복된 객체들에 대한 단일 객체 핸들을 얻는 부분과, 얻어진 객체핸들을 사용하여 위치 서비스에 의해 하나 이상의 컨택 주소를 얻는 부분으로 구성하였다. 주어진 모델로부터, 우리는 Naming/Trading 서비스와 위치 서비스에 의한 전체 바인딩 메커니즘의 처리과정을 나타내고, 통합 바인딩 서비스의 구성요소들에 대만 구조를 상세하게 기술하였다. 끝으로 우리의 모델을 구현하기 위해, 윈도우 운영체제와 Solaris 2.5/2.7에서 사용되는 CORBA 사양을 따르는 VisBroker 4.1과 자바 언어, SQL Server 2000 그리고 LSF를 이용하였다. 그리고 구현 환경과 구성요소에 대한 수행 화면을 보였다.ool)을 사용하더라도 단순 다중 쓰레드 모델보다 더 많은 수의 클라이언트를 수용할 수 있는 장점이 있다. 이러한 결과를 바탕으로 본 연구팀에서 수행중인 MoIM-Messge서버의 네트워크 모듈로 다중 쓰레드 소켓폴링 모델을 적용하였다.n rate compared with conventional face recognition algorithms. 아니라 실내에서도 발생하고 있었다. 정량한 8개 화합물 각각과 총 휘발성 유기화합물의 스피어만 상관계수는 벤젠을 제외하고는 모두 유의하였다. 이중 톨루엔과 크실렌은 총 휘발성 유기화합물과 좋은 상관성 (톨루엔 0.76, 크실렌, 0.87)을 나타내었다. 이 연구는 톨루엔과 크실렌이 총 휘발성 유기화합물의 좋은 지표를 사용될 있고, 톨루엔, 에틸벤젠, 크실렌 등 많은 휘발성 유기화합물의 발생원은 실외뿐 아니라 실내에도 있음을 나타내고 있다.>10)의 $[^{18}F]F_2$를 얻었다. 결론: $^{18}O(p,n)^{18}F$ 핵반응을 이용하여 친전자성 방사성동위원소 $[^{18}F]F_2$를 생산하였다. 표적 챔버는 알루미늄으로 제작하였으며 본 연구에서 연구된 $[^{18}F]F_2$가스는 친핵성 치환반응으로 방사성동위원소를 도입하기 어려운 다양한 방사성의 약품개발에 유용하게 이용될 수 있을 것이다.었으나 움직임 보정 후 영상을 이용하여 비교한 경우, 결합능 변화가 선조체 영역에서 국한되어 나타나며 그 유의성이 움직임 보정 전에 비하여 낮음을 알 수 있었다. 결론: 뇌활성화 과제 수행시에 동반되는 피험자의 머리 움직임에 의하여 도파민 유리가 과대평가되었으며 이는 이 연구에서 제안한 영상정합을 이용한 움직임 보정기법에 의해서 개선되

  • PDF

Regional frequency analysis using rainfall observation data in Gangwon Province (강원도 강우관측 자료를 이용한 지역빈도분석)

  • Young Il Jeon;Sang Ug Kim;Dong Il Seo;Jae Wook Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.211-211
    • /
    • 2023
  • 본 연구에서는 지역빈도분석을 이용하고 있는 홍수량 산정 지침에서 활용되고 있는 전국대상의 강우관소에 대한 확률강우량과 강원지역에 위치한 강우관측소만을 대상으로 산정한 확률강우량을 비교하였다. 이를 위해서 강원도 지역의 48개 지점의 지속기간별 강우자료를 수집한 후, K-means 기법을 이용하여 6개의 군집으로 구분하였다. 강원도 대부분이 산악지형임을 고려해 산악효과를 야기하는 지형인자와 강우자료의 관계를 파악하였다. 국가수자원관리종합정보시스템에서 수집한 강우자료를 사용하여 지속시간별 최대강우량과 산악효과를 야기하는 지형인자로 선정한 고도 이외에 위도, 경도를 각각 추가인자로 고려해 지역빈도분석을 수행하였다. 위 지형인자와 강우자료를 이용하여 수문학적 동질한 특성을 가지는 군집을 구성하였으며, 위도와 경도를 인자로 추가하면 더욱 강한 상관성을 보임을 알 수 있었다. 군집분석결과를 통해 모수를 추정하고 적절한 분포를 선택하였으며, 이상치검정과 적합도 검정을 통해 최종 분포를 결정하였다. 고도와 위도, 경도를 모두 고려해 이용한 지역빈도분석 결과 강원도의 실제 강우특성과 마찬가지로 고도의 높낮이에 따라 강우형태를 전국단위 지역빈도분석과 비교하였다. 최종적으로 현재 활용되고 있는 홍수량 산정 지침의 확률강우량과 강원지역에 위치한 강우관측소만을 대상으로 한 지역빈도분석의 차이의 발생원인과 강원지역에서의 특이성을 결론으로 제시하였다.

  • PDF

A Study of Research on Methods of Automated Biomedical Document Classification using Topic Modeling and Deep Learning (토픽모델링과 딥 러닝을 활용한 생의학 문헌 자동 분류 기법 연구)

  • Yuk, JeeHee;Song, Min
    • Journal of the Korean Society for information Management
    • /
    • v.35 no.2
    • /
    • pp.63-88
    • /
    • 2018
  • This research evaluated differences of classification performance for feature selection methods using LDA topic model and Doc2Vec which is based on word embedding using deep learning, feature corpus sizes and classification algorithms. In addition to find the feature corpus with high performance of classification, an experiment was conducted using feature corpus was composed differently according to the location of the document and by adjusting the size of the feature corpus. Conclusionally, in the experiments using deep learning evaluate training frequency and specifically considered information for context inference. This study constructed biomedical document dataset, Disease-35083 which consisted biomedical scholarly documents provided by PMC and categorized by the disease category. Throughout the study this research verifies which type and size of feature corpus produces the highest performance and, also suggests some feature corpus which carry an extensibility to specific feature by displaying efficiency during the training time. Additionally, this research compares the differences between deep learning and existing method and suggests an appropriate method by classification environment.

An Analysis on the Pre-Feasibility Evaluation Factors of Activation for Welfare Facilities for the Residents in Apartment Building (공동주택 주민복지시설의 활성화를 위한 사전 타당성 평가요인 분석)

  • Kim, Young-Hoon;Kang, Hyun-Wook;Won, Yoo-Man;Kim, Yong-Su
    • Korean Journal of Construction Engineering and Management
    • /
    • v.12 no.6
    • /
    • pp.160-167
    • /
    • 2011
  • An Analysis on the Pre-Feasibility Evaluation Factors of Activation for Welfare Facilities for the Residents in Apartment Building. The adapted research method of selected case five apartment building in D new town and carried out questionnaire survey to residents and user for draw items of feasibility evaluation. Drew items of feasibility evaluation classify as Plan section, Design section, and Operation section and evaluate the weight of each section utilizing analytical hierarchy process (AHP). Depending on the purpose and methods. The results of this study are as follows: Such as Plan section, Composition of Program Facility, User Charge Survey, Arrangement of Program Room were analyzed highest. Such as Design section, Arrangement of Program Room, Circulation planning, Educational Equipment were analyzed highest. And such as Operation section, Operation costs, Operation Plan, Review of Program Facility were analyzed highest.

Development and evaluation of ANFIS-based method for hydrological drought outlook method (수문학적 가뭄전망을 위한 ANFIS 활용 기법 개발 및 평가)

  • Moon, Geon Ho;Kim, Seon Ho;Bae, Deg Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.123-123
    • /
    • 2018
  • 가뭄은 홍수와 달리 진행속도가 비교적 느리기 때문에 초기에 감지한다면 피해를 최소화 할 수 있다. 국내에서는 가뭄전망을 위해 물리적 기반의 기상-수문연계해석 시스템을 구축하여 월 내지 계절전망을 수행하고 있다. 물리적 기반의 가뭄전망은 수치예보모델의 불확실성을 가지고 있으므로 예보 정확도 개선의 측면에서는 통계적 모델을 같이 활용하는 것이 바람직하다. 최근 국외에서는 통계적 방법인 AI (Artificial Intelligence) 기술을 사용하여 가뭄을 전망하는 연구가 활발히 진행 중이나, 아직까지 국내에서는 관련연구가 미흡한 실정이다. 이에 본 연구에서는 ANFIS (Adaptive Neuro-Fuzzy Inference System) 기반의 댐 유입량 예측 모델을 구축하고 SRI (Standardized Runoff Index)를 활용하여 수문학적 가뭄전망을 수행하였다. 대상유역은 국내 주요 다목적댐이 위치한 충주댐 유역과 소양강댐 유역을 선정하였다. 수문 및 기상자료는 국토 교통부 및 기상청의 관측 댐 유입량, 관측 강수량, 관측 기온 및 장기기상예보 자료를 사용하였다. ANFIS 모델 구축을 위한 훈련 및 보정기간과 검정기간은 각각 1987~2010년과 2011~2016년을 선정하였다. 수문학적 가뭄전망은 지속기간 3개월의 1개월 전망 SRI3를 활용하였으며, SRI3는 관측유입량과 예측유입량을 결합하여 산정하였다. 댐 예측유입량 및 수문학적 가뭄전망의 정확도 평가를 위해 상관계수, 평균제곱근오차를 활용하였다. 댐 예측유입량 평가 결과 예측값과 관측값의 상관계수가 높게 나타났으며, 평균제곱근오차는 낮아 예측성이 뛰어났다. SRI3의 경우 관측값과 예측값의 가뭄발생시기가 유사하여 가뭄을 적절하게 반영하는 것으로 나타났다. 본 연구의 결과는 통계적 기반의 수문학적 가뭄전망기법을 개발하였다는 측면에서 의의가 있으며, 향후 물리적 기반의 가뭄전망정보와 결합한다면 보다 실효성이 향상될 것으로 기대된다.

  • PDF

Data Preprocessing Technique and Service Operation Architecture for Demand Forecasting of Electric Vehicle Charging Station (전기자동차 충전소 수요 예측 데이터 전처리 기법 및 서비스 운영 아키텍처)

  • Joongi Hong;Suntae Kim;Jeongah Kim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.2
    • /
    • pp.131-138
    • /
    • 2023
  • Globally, the eco-friendly industry is developing due to the climate crisis. Electric vehicles are an eco-friendly industry that is attracting attention as it is expected to reduce carbon emissions by 30~70% or more compared to internal combustion engine vehicles. As electric vehicles become more popular, charging stations have become an important factor for purchasing electric vehicles. Recent research is using artificial intelligence to identify local demand for charging stations and select locations that can maximize economic impact. In this study, in order to contribute to the improvement of the performance of the electric vehicle charging station demand prediction model, nationwide data that can be used in the artificial intelligence model was defined and a pre-processing technique was proposed. In addition, a preprocessor, artificial intelligence model, and service web were implemented for real charging station demand prediction, and the value of data as a location selection factor was verified.

Deploy Position Determination for Accurate Parachute Landing of a UAV (무인기의 정밀 낙하산 착륙을 위한 전개지점 결정)

  • Kim, Inhan;Park, Sanghyuk;Park, Woosung;Ryoo, Chang-Kyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.6
    • /
    • pp.465-472
    • /
    • 2013
  • In this paper, we suggest how to determine the parachute deploy position for accurate landing of a UAV at a desired position. The 9-DOF dynamic modeling of UAV-parachute system is required to construct the proposed algorithm based on neural network nonlinear function approximation technique. The input and output data sets to train the neural network are obtained from simulation results using UAV-parachute 9-DOF model. The input data consist of the deploy position, UAV's velocity, and wind velocity. The output data consist of the cross range and down range of landing positions. So we predict the relative landing position from the current UAV position. The deploy position is then determined through distance compensations for the relative landing positions from the desired landing position. The deploy position is consistently calculated and updated.