DOI QR코드

DOI QR Code

Deploy Position Determination for Accurate Parachute Landing of a UAV

무인기의 정밀 낙하산 착륙을 위한 전개지점 결정

  • Kim, Inhan (Department of Aerospace Engineering, Inha University) ;
  • Park, Sanghyuk (Department of Aerospace Engineering, Inha University) ;
  • Park, Woosung (Department of Aerospace Engineering, Inha University) ;
  • Ryoo, Chang-Kyung (Department of Aerospace Engineering, Inha University)
  • Received : 2013.01.04
  • Accepted : 2013.05.31
  • Published : 2013.06.01

Abstract

In this paper, we suggest how to determine the parachute deploy position for accurate landing of a UAV at a desired position. The 9-DOF dynamic modeling of UAV-parachute system is required to construct the proposed algorithm based on neural network nonlinear function approximation technique. The input and output data sets to train the neural network are obtained from simulation results using UAV-parachute 9-DOF model. The input data consist of the deploy position, UAV's velocity, and wind velocity. The output data consist of the cross range and down range of landing positions. So we predict the relative landing position from the current UAV position. The deploy position is then determined through distance compensations for the relative landing positions from the desired landing position. The deploy position is consistently calculated and updated.

본 논문에서는 요구 위치에 정밀 착륙을 위한 낙하산 전개지점 선정 기법을 제안한다. 무인기-낙하산 시스템을 위해 9-DOF 운동 모델을 구성하였고, 신경회로망을 학습시키기 위한 입출력 데이터 셋을 구성하였다. 입력 데이터 셋은 현재 항공기 위치, 속도정보 및 바람 정보로 구성되어 있고, 출력 데이터 셋은 9-DOF 운동 모델을 시뮬레이션 하여 획득한 착륙 위치 정보이다. 이를 이용하여 nonlinear function approximator를 구성함으로써 현재 위치로부터 상대적인 착륙 지점을 예측할 수 있고, 예측된 착륙 지점과 요구 착륙 지점과의 상대적인 거리 오차를 계산하여 이를 보상해줌으로써 낙하산 전개 지점을 결정할 수 있다.

Keywords

References

  1. Kwon, H. J., "Development of the GPS guided parafoil system for precision airdrop", The Korean Society for Aeronautical & Space Sciences, Spring Conference, 2006. 4, pp. 659-662.
  2. Huh, S. S., Shim, H. C., "A Vision-based Automatic Landing System for Fixed-wing UAVs using an Inflated Airbag", The Korean Society for Aeronautical & Space Sciences, Spring Conference, 2008. 4, pp. 350-353.
  3. O. Prakash and N. Ananthkrishnan, "Modeling and Simulation of 9-DOF Parafoil-Payload System Flight Dynamics", AIAA Atmospheric Flight Mechanics Conference and Exhibit, Keystone, Colorado, August, 2006.
  4. M. T. Hagan, H. B. Demuth and M. H. Beale, Neural Network Design, PWS Publishing Company, 1996.
  5. J. Se-Ah, Study of Intelligent Pilot Model Based on Basic Figter Maneuvering for Air Combat Simulation, Inha University, 2012.
  6. P. Zarchan, Tactical and Strategic Missile Guidance, Progress in Astronautics and Aeronautics, Vol. 124, 1990.
  7. Brian L. Stevens and Frank L. Lewis, Aircraft Control and Simulation 2nd edition, JOHN WILEY & SONS, INC., 2003.
  8. Giorgio Guglieri, "Parachute Payload System Flight Dynamics and Trajectory Simulation", International Journal of Aerospace Engineering, 2012, pp. 1-17.
  9. E. Mooij, Q. G. J. Wijnands, and B. Schat, "9 DOF Parafoil/Payload Simulator Development and Validation", AIAA Modeling and Simulation Technologies Conference, Austin, TX, August, 2003.
  10. Park, J.-h., Yang, Y. R., Cho, T. H., Kim B. S., Submunition Descent Motions Ballistic Missile Analysis Report, 2nd edition, Gyeongsang National University, 2008.
  11. W. Pointer, G. Kotsis, P. Langthaler, M. Naderhirn, "Using formal methods to verify safe deep stall landing of a MAV", Digital Avionics Systems Conference (DASC), 2011 IEEE/AIAA 30th, Seattle, WA, October, 2011.
  12. U.S. Military, U.S. Military Specification MIL-F-8785C, 1980.
  13. S. Gage, "Creating a Unified Graphical Wind Turbulence Model from Multiple Specification", AIAA, Modeling and Simulation Technologies Conference and Exhibit, Austin, Texas, August, 2003.

Cited by

  1. 9-DOF Modeling and Turning Flight Simulation Evaluation for Parachute vol.17, pp.9, 2016, https://doi.org/10.5762/KAIS.2016.17.9.688