• Title/Summary/Keyword: 위천유역

Search Result 62, Processing Time 0.021 seconds

The assessment of the relative contribution of the shape of instantaneous unit hydrograph with heterogeneity of drainage path (배수경로 이질성에 의한 순간단위도 형상의 상대적 기여도 평가)

  • Choi, Yong-Joon;Kim, Joo-Cheol;Kim, Jae-Han
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.11
    • /
    • pp.897-909
    • /
    • 2009
  • The relative contribution of between hillslope-flow and stream-flow by heterogeneity of drainage path are quantitatively assessed in the present study with GIUH model based on grid of GIS. Application watersheds are selected Pyeongchang, Bocheong and Wi river basin of IHP in Korea. The mean and variance of hillslope and stream length are estimated and analyzed in each watershed. And coupling with observation storm events, estimate hillslope and stream characteristic velocity which dynamic parameters of GIUH model. The mean and variance of distribution of travel time (i.e. IUH) calculate using estimated pass lengths and characteristic velocities. And the relative contributions are assessed by heterogeneity of drainage path. As a result, the effect of the variance that determine shape of IUH dominate with hillslope's effect in the small watershed area (within 500 $km^2$). Thus, GIUH in the small watershed area must consider hillslope-flow.

Application of Improved Algorithm for Topographic Index Calculation (개선된 지형지수 산정 알고리즘의 적용에 관한 연구)

  • Kim, Sang-Hyeon;Lee, Ji-Yeong
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.4
    • /
    • pp.489-499
    • /
    • 1999
  • This research investigated the applicapability of an improved algorithm to calculate the topographic index, ln($\alpha$/tan B), for the topography of Korea employing channel initiation threshold area(CIT) and an exponent for the gradient(H). hanjaechun subwatershed in Cheongdochun and Dongok subwatershed in Wichun test watershed were selected as study areas. The digital elevation models(DEM) of study areas have been made with the resolution from 10m to 100m. Application of CIT to the traditional algorithm provide reasonable computation method in considering channel pixel impact. Introduction of the gradient exponent(H) made it possible to obtain better flow convergence effect in concave topography comparing with the traditional multiple flow direction algorithm. The improved algorithm shows the capability to relax the overestimation problem of rising limb of hydrograph through reducing overestimated high value of topographic index.

  • PDF

Hydrological Forecasting Based on Hybrid Neural Networks in a Small Watershed (중소하천유역에서 Hybrid Neural Networks에 의한 수문학적 예측)

  • Kim, Seong-Won;Lee, Sun-Tak;Jo, Jeong-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.4
    • /
    • pp.303-316
    • /
    • 2001
  • In this study, Radial Basis Function(RBF) Neural Networks Model, a kind of Hybrid Neural Networks was applied to hydrological forecasting in a small watershed. RBF Neural Networks Model has four kinds of parameters in it and consists of unsupervised and supervised training patterns. And Gaussian Kernel Function(GKF) was used among many kinds of Radial Basis Functions(RBFs). K-Means clustering algorithm was applied to optimize centers and widths which ate the parameters of GKF. The parameters of RBF Neural Networks Model such as centers, widths weights and biases were determined by the training procedures of RBF Neural Networks Model. And, with these parameters the validation procedures of RBF Neural Networks Model were carried out. RBF Neural Networks Model was applied to Wi-Stream basin which is one of the IHP Representative basins in South Korea. 10 rainfall events were selected for training and validation of RBF Neural Networks Model. The results of RBF Neural Networks Model were compared with those of Elman Neural Networks(ENN) Model. ENN Model is composed of One Step Secant BackPropagation(OSSBP) and Resilient BackPropagation(RBP) algorithms. RBF Neural Networks shows better results than ENN Model. RBF Neural Networks Model spent less time for the training of model and can be easily used by the hydrologists with little background knowledge of RBF Neural Networks Model.

  • PDF

A Study of Flood Runoff Variation by Travel Times Estimation Methods (도달시간 산정방법에 따른 홍수유출특성 변화에 관한 연구)

  • Park, Ki-Bum;Ko, Jin-Seuk;Jee, Hong-Gee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.1
    • /
    • pp.34-45
    • /
    • 2006
  • In this study comparison estimates travel times with observed travel time. In generally, peak flood discharges decrease become travel times longer. It is closely related to storage constant for the watershed routing of a flood. There are so many empirical formulas available for the estimation of travel time, storage coefficients and lag time but results computed generally show great different depending on individual formulas. When calculated flood discharge depend on the travel times varying the discharge. In this study the Wichun travel time shorter optimization travel time than observed travel time for the rusa and memi. There are showed good results for flood discharges, water level and velocity of the memi at the Younggok.

  • PDF

Comparison and Examination of the Calculating Hydrological Geographic Parameters Using GIS (GIS를 이용한 수문학적 지형인자 산정에 대한 비교검토)

  • Kim, Kyung-Tak;Choi, Yun-Seok;Lee, Hyo-Jung
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.1
    • /
    • pp.25-39
    • /
    • 2010
  • Recently, GIS softwares such as WMS, ArcHydro, and HyGIS which can calculate hydrological geographic parameters are popularized. These softwares have the functions to calculate various geographic parameters which are used in water resources from DEM (Digital Elevation Model). In this study, hydrological geographic parameters calculated by WMS and ArcHydro are compared and examined with them from HyGIS to evaluate the applicability of the parameters from HyGIS. Bochungcheon (Riv.), Wicheon (Riv.), Pyungchanggang (Riv.), Gyungancheon (Riv.), Naerincheon (Riv.), and Imjingang (Riv.) watersheds are selected for this study, and the shape of watershed, watershed area, watershed slope, the average slope of watershed, main stream length, main stream slope, maximum flow distance, and the slope of maximum flow distance are calculated to compare and examine the characteristics. Study results show that the average relative error of 7 geographic parameters from all the watersheds is 4.77 %, and all the watershed boundaries are very similar. So, all the geographic parameters calculated by each software show very similar value, and the geographic parameters calculated by HyGIS can be applied to water resources with WMS and ArcHydro which have been generally used.

Applicability Analysis of Flood Forecasting in Nakdong River Basin using Neuro-Fuzzy Model (Neuro-Fuzzy 모형에 의한 낙동강유역의 홍수예측 적용성 분석)

  • Rho, Hong-Sik;Kim, Tae-Hyung;Kim, Pan-Gu;Han, Kun-Yeun;Choi, Seung-Yong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.642-642
    • /
    • 2012
  • 최근에 들어 지구온난화에 따른 기후변화의 영향으로 국지성 집중호우와 돌발성 호우가 한반도 뿐 아니라 전 세계적으로도 많이 나타나고 있고, 그로 인한 이상홍수의 발생이 우리나라의 인명 및 재산피해를 날로 증가시키고 있는 추세이다. 그러나 현재 국내의 홍수방어시스템은 정확도 및 선행시간 확보 등의 측면에서 국민들의 요구수준까지는 그 역할을 수행하지 못하고 있는 실정이다. 또한 최근 4대강 살리기 사업을 통해 수행된 보 설치 및 하도 준설로 인해 하천환경의 변화가 크게 발생하여, 보다 정확하고 신속한 홍수위 예측기법이 요구되고 있는 실정이다. 이에 따라 현재 4대강 홍수통제소에서는 정확한 홍수위예측을 위해 4대강 본류 및 주요 지류에 대해 수리모형을 구축하고 있고, 기존의 저류함수모형에 의한 강우-유출 해석기법을 적용하여 주요 지류에 대한 유입량을 산정하기 위한 모형을 구축중에 있다. 국내 홍수방어 시스템에 현재까지 사용되어 오고 있는 저류함수모형 및 수위-유량 관계식을 이용한 방법은 물리적 기반의 홍수예측모형으로 유역의 지형학적 인자와 그에 따른 여러 변수를 포함하기 때문에 하천환경의 변화로 인해 각각의 추적과정에서 오차들이 발생하여 해석결과에 영향을 미치는 단점이 있다. 이에 반해 데이터 기반 모형은 강우-유출 모형에서 사용되는 많은 수문학적 자료 및 매개변수들의 사용 없이 오직 수위 및 강우측정 자료만을 이용하여 홍수를 예측하는 모형이다. 본 연구에서는 낙동강 유역에 대해 보다 정확한 홍수위 예측을 위해 현재 낙동강홍수통제소에서 구축중인 낙동강 본류의 수리모형의 주요 지류의 유입량 산정을 위해 기존의 물리적 기반 모형이 아닌 뉴로-퍼지(Neuro-Fuzzy) 모형을 이용한 data 기반 모형을 적용해 기존 물리적 기반 모형과 비교 분석 하고자 하였다. 낙동강의 주요지류인 감천, 금호강, 남강, 내성천, 밀양강, 반변천, 위천, 황강을 적용유역으로 선정하여 유역별로 티센망을 구축하였고, 각 지류별로 수위관측소를 선정하여 최근 10년동안 낙동강유역의 홍수예 경보가 발령되었거나 많은 비가 온 사상을 선정해 모형을 검증하였다. 모형은 실시간 수위측정 자료와 강우자료 및 해당유역 댐의 방류량 자료를 이용해 유역별 최적 입력자료 조합을 선정하여 간단하게 구축할 수 있었다. 또한 10분 단위 및 30분 단위의 입출력 자료로 모형을 구축하여 비교하였다. 이번 연구에서 수행한 낙동강유역에서의 뉴로-퍼지(Neuro-Fuzzy) 모형을 이용한 홍수예측기법을 통해 몇가지 data만으로 유역의 주요지점에 대한 홍수위와 홍수량을 예측할 수 있음을 확인할 수 있었다. 모의 결과는 실측치와 비교해 정확도 면에서 우수함을 보여 주었으나 예측시간이 길어질수록 실측치의 경향을 벗어나는 결과를 보였다. 그러나 실시간 홍수예 경보에 있어서는 만족할만한 선행시간을 확보할 수 있었다. 구축된 Data 기반 모형이 물리적 기반 모형과 더불어 낙동강 홍수예 경보를 위한 모형으로 사용될 수 있다면 보다 효율적인 예 경보 체계 구축에 도움을 줄 수 있을 것으로 판단된다.

  • PDF

A Study on the Estimation of Effective Precipitation using Detailed Soil Map (정밀토양도를 이용한 유효강우량 산정에 관한 연구)

  • Kim, Kyung-Tak;Choi, Yun-Seok
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.7 no.2
    • /
    • pp.1-15
    • /
    • 2004
  • For the simulation of flow phenomenon that calculate basin outflow, it is required to estimate effective precipitation which contributes to direct runoff. This paper is focused on using detailed soil map which is one of the data required to estimate effective precipitation by SCS CN method. Korean detailed soil map must be reclassified as SCS hydrologic soil group when it is applied to SCS CN method. In this study, Korean detailed soil maps which are reclassified as SCS hydrologic soil group by the methods of Her and Jung (1987) and Jung et al. (1995) are applied to flow simulation and the results are analyzed. The study sites are Wichon watershed and Pyungchang river basin which are studied by International Hydrological Program(IHP). HEC-1 and WMS v6.1 are used to simulate flow phenomenon and calculate geographic parameters. The difference of flow analysis results from each soil reclassification method is different from each sites. But the results of flow analysis approximate observed data by using Jung et al. (1995) method more than Her and Jung (1987) method.

  • PDF

Discharge Estimation at Ungauged Catchment Using Distributed Rainfall-Runoff Model (분포형 강우-유출 모형을 이용한 미계측 중소유역의 유량 추정)

  • Choi, Yun-Seok;Kim, Kyung-Tak;Shim, Myung-Pil
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.4
    • /
    • pp.353-365
    • /
    • 2010
  • Generally, river discharge is measured at flood forecasting points, upstream dam points, large rivers, and important points over a basin, and it is hard to estimate discharge of medium or small stream and small catchment. Physically based rainfall-runoff model with geographical parameters can simulate discharge at all the points within a basin with optimized parameters for a point in the basin. In this study, GRM (Grid based Rainfall-runoff Model) calibrated at the outlet is applied. The discharge at upstream point is estimated and the possibility of model regionalisation is examined for ungauged catchment of small or medium stream within a river system. Wicheon and Boksu watershed in Nakdonggang (Riv.) and Yudeungcheon (Riv.) respectively are selected. The discharge at Miseong and Sindae station is simulated with the parameters estimated at Museong and Boksu station. The results of Miseong and Sindae station show good agreement with observed hydrographs in peak discharge and peak time and consistently linear relationships with high correlations in discharge volume, peak discharge, and peak time. And it shows GRM could be applied to estimate discharge at ungauged catchments along a river system.

The Estimation of Ecological Flow Recommendations for Fish Habitat (하천의 어류 서식환경을 고려한 생태학적 추천유량 산정)

  • Sung, Young-Du;Park, Bong-Jin;Joo, Gea-Jae;Jung, Kwan-Sue
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.7 s.156
    • /
    • pp.545-554
    • /
    • 2005
  • The detailed interdisciplinary surveys were conducted on the pattern of habitat use of dominant fishes during the spawning and adult stage. The hydraulic parameters of the depth and velocity, discharge, substrate cover streams, and distribution of fish in the Yeonggang, WiCheon, HoeCheon, GeochangwiCheon, CheongdoCheon, DanjangCheon (the Nakdong River Basin) were measured. The Habitat Suitability Criteria was developed for the two fish species (Zacco Platypus and Zacco Temmincki) and life stages(spawning and adult), habitat conditions (depth, velocity and covet). The Physical Habitat Simulation of the Instream Flow Incremental Methodology was applied to calculate for optimal flow and the ecological flow recommendation was proposed by choosing the largest one in the optimal flow. The ecological flow recommendation was $5.0\;m^3/s{\sim}10.0\;m^3/s$ (e.g., $6.5\;m^3/s$ in the NaeseongCheon). Also, the ecological flow recommendations were compared with the existing ecological flow and flow duration analysis.

The Geomorphic Development of Angyae Basin (안계분지(安溪盆地)의 지형발달)

  • Bak, Byeong-Su;Son, Myoung-Won
    • Journal of the Korean association of regional geographers
    • /
    • v.3 no.1
    • /
    • pp.51-62
    • /
    • 1997
  • In various places of drainage basins of major rivers in South Korea are distributed intermontane basins. Basin floor covered with fluvial deposits carried from the surrounding mountane area becomes alluvial plain. Its productivity is comparatively higher than anywhere else. Thus basin is a local administrative, economic, and cultural core area. Intermontane basin consists of backward mountane area, gentle hills, and alluvial lowland. The purpose of this paper is to elucidate the morpogenetic processes and development age of Angae Basin located in the sedimentary rock region. Hills with the height of a.s.l. $80{\sim}100m$ distributed in Angae Basin are residual landforms, which are the remnants of dissection of the etchplain that results from the denudation of bedrock deeply weathered along tectolineaments under the warm and moist climate, and reflect lithological differentiation of bedrock. Those hills have been comparatively higher ridges since the initial stage of the original etchplain, and they have been immune from fluvial processes. The etchplain appeared as $80{\sim}100m$ hills. the high terrace distributed in upstream reach of Nakdong River drainage basin and the old meander-cut at Seoburi in Wicheon drainage basin, are formed at the same stage when riverbed of Wicheon Stream functioned as a local base level according as the fluvial system of Wichoen arrived at dynamic equilibrium.

  • PDF