• Title/Summary/Keyword: 위성 시뮬레이터

Search Result 133, Processing Time 0.026 seconds

Standard Model Development for EPS Simulator of a Satellite (인공위성 전력계 시뮬레이터의 표준화 모델 개발)

  • Jung, Ok-Chul;Lee, Sang-Uk;Kim, Jae-Hoon
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.360-362
    • /
    • 2005
  • In this paper, standard model for electrical power subsystem of a satellite simulator is presented and analyzed. The main purpose of standard model simulator is to promote platform independency, interoperability and reusability of simulation models. And, EPS simulator prototype model is proposed using the SMP2 standard.

  • PDF

Simulator for High Resolution Synthetic Aperture Radar Image Formation and Image Quality Analysis (고해상도 SAR 영상 형성 및 품질 분석을 위한 시뮬레이터)

  • Jung, Chul-Ho;Oh, Tae-Bong;Kwag, Young-Kil
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.8
    • /
    • pp.997-1004
    • /
    • 2007
  • High resolution synthetic aperture radar image could be sensitive to the various parameters of the payload, platform, and ground system. In this paper, a parameter based SAR simulator is presented for two-dimensional image formation and image quality analysis. Functional modules are implemented by Matalb code and GUI for the flexibility and expandability. Main function of this simulator includes the SAR input signal generation, range-doppler algorithm(RDA) based SAR image formation, and the SAR image quality analysis which is relevant to the SAR system design parameters. This simulator can effectively be used for the SAR image quality performance evaluation, which can be applicable to the airborne as well as spaceborne SAR system design and analysis.

Development and Validation of an Integrated GNSS Simulator Using 3D Spatial Information (3차원 공간정보를 이용한 통합 GNSS 시뮬레이터 개발 및 검증)

  • Kim, Hye-In;Park, Kwan-Dong;Lee, Ho-Seok
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.6
    • /
    • pp.659-667
    • /
    • 2009
  • In this study, an integrated GNSS Simulator called Inha GNSS Simulation System (IGSS) using 3D spatial information was developed and validated. Also positioning availability and accuracy improvement were evaluated under the integrated GNSS environment using IGSS. GPS and GLONASS satellite visibility predictions were compared with real observations, and their frequency of error were 6.4% and 7.5%, respectively. To evaluate positioning availability and accuracy improvement under the integrated GNSS environment, the Daejeon government complex area was selected to be the test site because the area has high-rise buildings and thus is susceptible to signal blockages. The test consists of three parts: the first is when only GPS was used; the second is when both GPS and GLONASS were simulated; and the last is when GPS, GLONASS, and Galileo were used all together. In each case, the number of visible satellites and Dilution Of Precision were calculated and compared.

Performance Analysis of Linear Array Antenna for Anti-jamming GPS Systems (항재밍 GPS 시스템을 위한 선형 어레이 안테나 성능 분석)

  • Kim, Kiyun
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.4
    • /
    • pp.46-51
    • /
    • 2015
  • In this paper, I design a linear array antenna simulator for anti-jamming GPS systems and perform various performance analysis by simulation. First, I generate simulated transmission signals through the analysis of GPS satellite signal structure, and analyze SNR(Signal to Noise power Ratio) performance of linear array antenna according to number of arrays under noise environments. In addition, I analyze the performance of the anti-jamming beam pattern using MMSE(Minimum Mean Square Error) signal processing method, and also analyze the anti-jamming performance considering antenna calibration problem when there are different delays between arrays.

자율운항선박의 원격제어 지연이 충돌에 미치는 영향 식별을 위한 실험방법의 고찰

  • 두바이송;이춘기;김대정;예병덕;임정빈
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.11a
    • /
    • pp.109-110
    • /
    • 2023
  • 자율운항선박(Maritime Autonomous Surface Ships, MASS)은 4수준으로 구분되는데, 현재 세계적으로 수준 2-3 사이의 원격제어 자율운항선박이 상용화를 시작할 것으로 조사되었다. 원격제어 자율운항선박은 3 주요요소(MASS, 해상위성통신, 원격제어자)로 구성되는데, 주요한 문제는 통신 손실이다. 자율운항선박의 원격제어는 해사 위성통신을 이용할 수밖에 없는데, 이러한 해사 위성통신은 통신두절, 대용량 데이터 송수신에 의한 지연 등이 문제로 대두되고 있다. 본 연구의 목적은 제어 데이터 송수신 과정에서 발생하는 지연시간이 충돌사고에 미치는 영향을 식별하기 위한 것으로, 우선하여 이러한 영향을 식별할 수 있는 실험방법을 고찰하고자 한다. 실험방법은 선박조종시뮬레이터를 이용할 것인데, 그 이전에 제어지연이 발생하는 메카니즘을 구현하고, 이러한 메카니즘에 의해서 정량적 및 정성적 분석이 가능한 방법론을 검토하였다. 본 연구는 자율운항선박에서 발생할 수 있는 제어지연이 항해안전에 미치는 영향의 과학적 식별과 평가에 관한 하나의 기반이될 것으로 기대된다.

  • PDF

Development of Onboard Orbit Generation Algorithm for GEO Satellite (정지궤도 위성의 탑재 궤도 생성 알고리듬 개발)

  • Yim, Jo Ryeong;Park, Bong-Kyu;Park, Young-Woong;Choi, Hong-Taek
    • Aerospace Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.7-17
    • /
    • 2014
  • This technical paper deals with development of on-board orbit generation algorithm for GEO Satellite. This paper presents the research analysis results performed in order to improve the accuracy of the existing algorithm used for generating real-time orbit information for GEO satellite. The error impact on orbit accuracy due to the orbit error sources were analyzed with the algorithm suggested by this research. As a result of the analyses, it is found that the initial orbit should be determined with an accuracy of less than 50 m and the reference position angle error for the ground station and the satellite should be maintained within ${\pm}0.0025deg$ in order to meet the orbit accuracy specification. The development of on-board flight software based on the new algorithm was accomplished and the performance verification is ongoing by using a software based performance verification tool.

Development of a GPS Receiver System for Satellite Launch Vehicles (위성발사체용 GPS 수신기 시스템의 개발)

  • Kwon, Byung-Moon;Moon, Ji-Hyeon;Shin, Yong-Sul;Choi, Hyung-Don;Cho, Gwang-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.9
    • /
    • pp.929-937
    • /
    • 2008
  • A GPS receiver system utilized on satellite launch vehicles should operate normally under harsh environments as well as high-dynamic conditions. The GPS receiver system to use for range safety of KSLV(Korea Space Launch Vehicle)-I that is the first satellite launch vehicle developed by KARI(Korea Aerospace Research Institute) has been confirmed to survive under the environment of the launcher through extensive terrestrial tests including humidity, high and low temperatures, vacuum, sinusoidal and random vibrations, shocks, acceleration, EMI/EMC(Electromagnetic Interference/ Electromagnetic Compatibility), etc. Several performance tests have been also carried out in order to evaluate tracking capability and accuracy of the GPS receiver under high-dynamic conditions using a GPS signal simulator. Some lessons-learned during development of the GPS receiver system and its special characteristics compared with COTS(Commercial-Off-The-Shelf) GPS receiver systems are described in this paper.

An Implementation of a GPS Signal Generator based on FPGA and Indoor Positioning System (FPGA를 기반으로 한 GPS 신호생성기 구현 및 실내측위 시스템)

  • Choi, Jun-hyeok;Kim, Young-Geun;Ahn, Myung-Soo
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.3
    • /
    • pp.38-43
    • /
    • 2015
  • This paper describes a GPS signal generator that can generate multiple satellite signals in real time at the RF level. It realizes the verified software algorithm on a FPGA. The algorithm models orbits and environmental errors such as ionospheric and tropospheric multipath. The position of a simulated receiver is one of simulation parameters. The hardware which consists of a digital logic board and an analog board can generate 16 simulated satellites signals at the same time. The users can generate spoofing signals and jamming signals as well as satellite signals by using the windows-based control software. In addition, the software provides GIS-based simulation scenarios editing tools. We verified the generator by using commercial receivers. As an application, we configured generators as indoor positioning systems and tested them in a building. To improve the accuracy of indoor systems is our further study.

Design and Development of PCI-based 1553B Communication Software for Next Generation LEO On-Board Computer (차세대 저궤도 위성의 PCI 기반의 1553B 통신 소프트웨어 설계)

  • Choi, Jong-Wook;Jeong, Jae-Yeop;Yoo, Bum-Soo
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.3
    • /
    • pp.65-71
    • /
    • 2016
  • Currently developing the OBC of the next-generation LEO satellite by Korea Aerospace Research Institute adopts the LEON2-FT/AT697F processor to achieve high performance. And various communication devices such as SpaceWire, MIL-STD-1553B, DMAUART and CAN Master are integrated to the separated standard communication FPGAs within the OBC, where they can be controlled by the processor and flight software (FSW) through PCI interface. The Actel 1553BRM IP core is used for the 1553B in the next-generation LEO OBC and the B1553BRM wrapper from Aeroflex Gaisler is used for connecting it to the AMBA bus in FPGA. This paper presents the design and development of PCI-based 1553B communication software, and describes the handling mechanism of 1553B operation in FSW task level. Also it shows the test results on real-hardware and simulator.

Method of Differential Corrections Using GPS/Galileo Pseudorange Measurement for DGNSS RSIM (DGNSS RSIM을 위한 GPS/Galileo 의사거리 보정기법)

  • Seo, Ki-Yeol;Kim, Young-Ki;Jang, Won-Seok;Park, Sang-Hyun
    • Journal of Navigation and Port Research
    • /
    • v.38 no.4
    • /
    • pp.373-378
    • /
    • 2014
  • In order to prepare for recapitalization of differential GNSS (DGNSS) reference station and integrity monitor (RSIM) due to GNSS diversification, this paper focuses on differential correction algorithm using GPS/Galileo pesudorange. The technical standards on operation and broadcast of DGNSS RSIM are described as operation of differential GPS (DGPS) RSIM for conversion of DGNSS RSIM. Usually, in order to get the differential corrections of GNSS pesudorange, the system must know the real positions of satellites and user. Therefore, for calculating the position of Galileo satellites correctly, using the equation for calculating the SV position in Galileo ICD (Interface Control Document), it estimates the SV position based on Ephemeris data obtained from user receiver, and calculates the clock offset of satellite and user receiver, system time offset between GPS and Galileo, then determines the pseudorange corrections of GPS/Galileo. Based on a platform for performance verification connected with GPS/Galileo integrated signal simulator, it compared the PRC (pseudorange correction) errors of GPS and Galileo, analyzed the position errors of DGPS, DGalileo, and DGPS/DGalileo respectively. The proposed method was evaluated according to PRC errors and position accuracy at the simulation platform. When using the DGPS/DGalileo corrections, this paper could confirm that the results met the performance requirements of the RTCM.