• Title/Summary/Keyword: 위성방열판 설계

Search Result 21, Processing Time 0.025 seconds

광학탑재체 냉각유닛 열완충질량의 효과 분석

  • Jang, Su-Yeong;Lee, Deok-Gyu;Lee, Eung-Sik;Yeon, Jeong-Heum;Lee, Seung-Hun
    • Bulletin of the Korean Space Science Society
    • /
    • 2009.10a
    • /
    • pp.50.2-50.2
    • /
    • 2009
  • 지구관측위성의 광학탑재체 내부에 장착된 초점면결상장치(FPA, Focal Plane Assembly)는 영상촬영시 많은 열을 발생하며, 최상성능획득을 위해서는 온도가 좁은 온도범위 내에서 유지되어야 한다. 초점면결상장치가 짧은 시간 동안 많은 열을 발생할 때, 이를 효과적으로 냉각시키기 위해 보통 히트파이프와 복사방열판을 이용한다. 이번 연구에서는 초점면결상장치의 최대상승온도를 낮추고, 영상촬영대기시 최적온도유지를 위한 히터작동율을 낮추기 위해 초점면결상장치와 복사방열판 사이에 열완충질량(TBM, Thermal Buffer Mass)을 적용하였는데, 이를 통해 얻을 수 있는 열설계 개선효과에 대해서 기술한다.

  • PDF

Study on the Thermal Radiation Performance of the Multi-functional Structure Made of the Carbon Fiber Composite Material (탄소섬유 복합재를 이용한 위성용 다기능 구조체의 방열성능 분석)

  • Kim, Taig-Young;Hyun, Bum-Seok;Seo, Young-Bae;Jang, Tae-Seong;Seo, Hyun-Suk;Lee, Jang-Joon;Kim, Won-Seock;Rhee, Ju-Hun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.2
    • /
    • pp.157-164
    • /
    • 2012
  • The design strategy of the multi-functional structure is that the electrical components and the circuits are directly put on their supporting structural panel in which the radiation shields and the thermal control functions are integrated. Applying the multi-functional structure reduces the total mass and size of the space system and makes it possible to lower launch cost. In present study the performance of thermal radiation for six types of multi-functional structure are investigated by the numerical method. The effect of the rib configuration on heat transfer for the multi-functional-structure is not important alone but is meaningful considering with the structural stiffness, difficulty of manufacturing and mass increase. In heat spreading point of view, the thickness of the outer conductive layer is important rather than the rib configuration and the trade-off study with the mass and thickness is required for optimum design.

Numerical Study on the Thermal Design of Lunar Terrain Imager System Loaded on the Korea Pathfinder Lunar Orbiter (시험용 달 궤도선의 광학탑재체 시스템 열설계에 대한 수치해석적 연구)

  • Kim, Taig Young;Chang, Su-Young;Heo, Haeng-Pal
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.4
    • /
    • pp.309-318
    • /
    • 2019
  • The thermal design of the Lunar Terrain Imager (LUTI) on the Korean Pathfinder Lunar Orbiter (KPLO) was performed and the soundness of the thermal design was verified by thermal analysis. The thermal environment of the lunar mission orbit should be reflected in the thermal design because the IR radiation of the lunar surface is important, unlike the earth orbit. The components or modules exposed to the outside of the satellite are insulated with MLI as much as possible, but the camera tube and the radiator are functionally exposed, so the thermal shield using the concept of radiation shape factor is mounted on the front to mitigate IR radiation. The IR emissivity is important in the front side of the radiator that receives little solar radiation, and components that are susceptible to thermal deformation such as the tube use a radiation heater to minimize the temperature gradient. Through the investigation of computational results, it was confirmed that the thermal design of LUTI is stable in various situations.

Design and Thermal Analysis of Focal Plane Assembly Cooling Unit of Earth Observation Camera (저궤도 지구관측위성 주탑재체 냉각유닛 설계와 열해석)

  • Seo, Joung-Ki;Cho, Hee-Ken;Lee, Deog-Gyu;Lee, Seung-Hoon;Choi, Hae-Jin;Kang, Seok-Bong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.6
    • /
    • pp.580-585
    • /
    • 2009
  • Thermal analysis and design of FPA(Focal Plane Assembly)-CU(Cooling Unit) for Earth observation camera is performed. FPA-CU is the first cooling device for a spacecraft which is designed and manufactured by its own technology in Korea. FPA-CU has a special feature, TBM(Thermal Buffer Mass) which is discriminated from typical cooling devices using heat pipes and radiator. TBM can be regarded as a thermal energy reservoir and it shows thermally transient characteristics, which make it difficult to design the size and shape of TBM. In current study, a method to determine the volume and the size of TBM is proposed and validated. The transient thermal analysis for FPA-CU for 5 operational scenarios is performed and validates the final design of FPA-CU (Radiator,TBM, Heat pipe I/F). In case of an abnormal operation of a heat pipe among three radiator heat pipes, the temperature of FPA can be increased $3{\sim}4^{\circ}C$ according to the numerical simulation.

Analytical Investigation of In-direct Heater to Simulate Space Thermal Environment for Thermal Vacuum Test (열진공 시험용 비접촉식 우주 열환경 모사 장치의 해석적 검토)

  • Baek, Cheul-Woo;Shin, So-Min;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.2
    • /
    • pp.178-183
    • /
    • 2012
  • To simulate space thermal environment in thermal vacuum test, direct or in-direct heater has been applied on the radiator. Both of them, direct heater attached on the radiator and indirect heater with a distance from the radiator, simulate the heat fluxes from the Sun radiation, the Earth IR and Albedo. They also supply the heat fluxes to the radiator of spacecraft to achieve the target temperature according to thermal test conditions. In general, indirect heater is used when the heater is not allowed to attach on the radiator directly due to constraints of coating property or contamination. For in-direct heater design, it is needed to estimate the heat power to make the extreme test conditions and minimize the interference with heat exchange of radiator and shroud. In this study, optimized thermal design of in-direct heater is proposed and investigated by commercial S/W SINDA. The effective values of design factors are also derived.

Satellite Thermal Control Device Enhanced by Latent Heat of the Phase Change Material (응고/융해 잠열을 이용한 위성용 열제어장치의 실험적 연구)

  • Kim, Tae Su;Shin, Yoon Sub;Kim, Taig Young;Seo, Jung-gi;Hyun, Bum-Seok;Cheon, Hyeong Yul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.10
    • /
    • pp.887-894
    • /
    • 2016
  • The thermal control device using solid-liquid phase change material (PCM) is designed, manufactured, and experimented in thermal environment chamber. The n-Hexadecane is selected as a PCM and its melting point is placed within the component working temperature range. The PCM container is made of Al6061 and has the thermal spreading fins inside. To simulate the working condition for on-orbit satellite the heat pipes are used to connect the heater and radiator and the PCM thermal control device (PCMTD) is installed at the middle portion of heat pipes. The thermal buffer mass (TBM), which is same configuration and volume with PCMTD, is also manufactured to compare the thermal control performance. As a result, the PCMTD is not only more efficient than TBM in their temperature control features but both mass and power of compensation heater are reduced.

A Study on the Design and Fabrication of Diplexer Using H-plane T-junction for KOREASAT-III Transponder (자계면 T-접합을 이용한 무궁화 III호 위성체용 다이플렉서의 설계 및 제작에 관한 연구)

  • 이용민;홍완표;신철재;강준길;나극환
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.4
    • /
    • pp.582-593
    • /
    • 1999
  • This paper presents the design and fabrication of the diplexer for a KOREASAT-III Ka-band satellite transponder. The transmission characteristics of the diplexer is analyzed by calculating the generalized scattering matrix using mode matching method. It is composed of 2 bandpass filters, coupled with H-plane T-junction having symmetrical inductive iris and E-plane metal insert structures. Compared with the size and weight of the Rx and Tx filter loaded with a transponders respectively, those of the diplexer can be effectively reduced. In a high power transmission, the variation of the filter characteristics is minimized by the scheme that irises are extended to the exterior of H-plane of the waveguide. This scheme needs no extra heat sinks for dissipating high power. The diplexer is designed to improve the simplification, durability and reliability by eliminating tuning screws, which have been used to compensate for the characteristics of fabricated filters. The bandpass filters of the diplexer show the insertion loss of less than 1.2 dB and the return loss in excess of 15 dB. The isolations of more than 65 dB have been achieved between Rx and Tx filter.

  • PDF

Full-Wave Analysis, Design and Fabrication of Duplexer by Mode Matching Method for Ka-Band Transponder (모드정합법에 의한 Ka-밴드 위성중계기용 듀플렉서의 Full-Wave 분석 및 설계${\cdot}$제작에 관한 연구)

  • Lee, Yong-Min;Ra, Keuk-Hwan
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.8
    • /
    • pp.36-44
    • /
    • 1999
  • This paper presents the design and fabrication of the duplexer for a Ka-band satellite transponder which is analyzed transmission characteristics by calculating the generalized scattering matrix using mode matching method. It is composed of 2 bandpass filters, coupled with H-plane T-junction having symmetrical inductive iris and E-plane metal insert structures. Compared with the size and weight of the Rx and Tx filter loaded with a transponders respectively, those of the duplexer can be effectively reduced. In a high power transmission, the variation of the filter characteristics is minimized by the scheme that irises are extended to the exterior of H-plane of the waveguide. This scheme needs no extra heat sinks for dissipating high power. The duplexer is designed to improve the simplification, durability and reliability by eliminating tuning screws, which have been used to compensate for the characteristics of fabricated filters. The bandpass filters of the duplexer show the insertion loss of less than 1.2 dB and the return loss in excess of 15 dB. The isolations of more than 65 dB have been achieved between Rx and Tx filter.

  • PDF

Numerical Study on the Thermal Control Device for Satellite Components Using the Phase Change Material Combined with Heat Pipe in Parallel (상변화물질과 열관을 병렬 조합한 위성부품 열제어장치의 수치해석적 연구)

  • Shin, Yoon Sub;Kim, Tae Su;Kim, Taig Young;Seo, Young Bae;Seo, Jung-gi;Hyun, Bum-Seok;Cheon, Hyeong Yul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.4
    • /
    • pp.373-379
    • /
    • 2016
  • The thermal control device for the periodic working component combined solid-liquid phase change material (PCM) with heat pipes is designed and numerically studied. Due to high latent heat and retaining constant temperature during melting process the component peak temperature, not withstanding small radiator size, is reduced. The warm-up heater power consumption to keep the minimum allowed temperature is also cut down since the accumulated thermal energy is released through the solidification. The thermal buffer mass (TBM) made of Al can give the similar effect but the mass and power consumption of warm-up heater should increase compared to PCM. The amount of PCM can be optimized depending on the component heat dissipation and on/off duty time.

Modelling and Preliminary Prediction of Thermal Balance Test for COMS (통신해양기상위성의 열평형 시험 모델 및 예비 예측)

  • Jun, Hyoung-Yoll;Kim, Jung-Hoon;Han, Cho-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.3
    • /
    • pp.403-416
    • /
    • 2009
  • COMS (Communication, Ocean and Meteorological Satellite) is a geostationary satellite and developed by KARl for communication, ocean and meteorological observations. It will be tested under vacuum and very low temperature conditions in order to verify thermal design of COMS. The test will be performed by using KARI large thermal vacuum chamber, which was developed by KARI, and the COMS will be the first flight satellite tested in this chamber. The purposes of thermal balance test are to correlate analytical model used for design evaluation and predicting temperatures, and to verify and adjust thermal control concept. KARI has plan to use heating plates to simulate space hot condition especially for radiator panels of satellite such as north and south panels. They will be controlled from 90 K to 273 K by circulating GN2 and LN2 alternatively according to the test phases, while the main shroud of the vacuum chamber will be under constant temperature, 90 K, during all thermal balance test. This paper presents thermal modelling including test chamber, heating plates and the satellite without solar array wing and Ka-band reflectors and discusses temperature prediction during thermal balance test.