• Title/Summary/Keyword: 위상 차이

Search Result 555, Processing Time 0.025 seconds

Design of GPS Receiving Antenna Installed in a Missile's Warhead (미사일 탑재형 GPS 안테나 설계)

  • Lee Jong-Min;Woo Jong-Myung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.9 s.112
    • /
    • pp.900-912
    • /
    • 2006
  • A GPS receiving antenna installed in the missile's warhead is designed and fabricated at a center frequency 1.575 GHz. The circular shaped antenna is installed in the middle of the warhead where the antenna's patch and the ground plane are connected with a hollow cylindrical shaped short pin. Using the dual feeding and phase difference method, an omni-directional radiation pattern which direction is normal to the missile's axis(H-plane) is obtained. The optimized diameters of the circular patch and the cylindrical ring typed shorting pin of the GPS receiving antenna which use the FR4.material(dielectric constant $\varepsilon_r=4.6$) are 59.5 mm and 14 mm, respectively. The cylindrical body with diameter 100 mm and height 500 mm is attached to the lower part of the warhead in order to complete the missile figure. The radiation patterns are measured by changing the angle and phase between the dual feeding points. When the phase difference of dual feeding is $100^{\circ}$ and the angle between the dual feeding points is $100^{\circ}$, the nearly omni-directional radiation pattern in the H-plane is obtained. In this case, the antenna gain is -5.55 dBd and the relative level difference between the maximum and the minimum radiation intensity is 3.98 dB.

P-wave Velocity Anisotropy in the Upper Crust of the Southern Korean Peninsula Using Seismic Signals from Large Explosions (대규모 발파자료를 이용한 한반도 남부 상부지각의 종파 속도 이방성)

  • Hong, Myung-Ho;Kim, Ki-Young
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.3
    • /
    • pp.225-232
    • /
    • 2009
  • As part of seismic experiments investigating crustal velocity structures of the Korean peninsula, permanent (fixed) seismographs of the Korea Meteorological Administration (KMA) network recorded seismic signals from four and eight large explosions in Korean Crustal Research Team (KCRT) profiles shot in 2004 and 2008, respectively. Among the seismograms recorded by 43 velocity sensors and 103 accelerometers at KMA stations distributed throughout the southern Korean Peninsula, 156 records with epicentral distances less than 120 km and high signal-to-noise ratios were analyzed to determine velocity anisotropy of the Pg phase. Relative elevation corrections of -101.6 to 105.3 ms were made using velocity information derived from the 2004 KCRT profile data and differences in elevation between the permanent KMA stations and the temporary stations in the KCRT profiles at the same source-receiver offsets. To remove site effects, receiver-station corrections of -89.6 to 192.2 ms were additionally made to the KMA station data by subtracting the average differences in traveltimes between KMA stations and portable stations at the same offsets for all available shots with different azimuths. With the exception of anomalously fast velocities along trends of the Chugaryeong fault zone and the Okchon fold belt and anomalously slow velocities in the regions of high terrestrial heat near Yeongduk and Ulsan, the analysis of crustal velocity anisotropy using the Pg phase indicates overall isotropy in the southern half of the Korean peninsula.

The Effect of Lattice Topology on Benzyl Alcohol Adsorption on Kaolinite Surfaces: Quantum Chemical Calculations of Mulliken Charges and Magnetic Shielding Tensor (캐올리나이트 규산염 층과 벤질알코올의 반응에 대한 양자화학계산에서 결정학적 위상이 멀리켄 전하와 자기 차폐 텐서에 미치는 영향)

  • Lee, Bum-Han;Lee, Sung-Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.313-325
    • /
    • 2007
  • In order to have better insights into adsorption of organic molecules on kaolinite surfaces, we performed quantum chemical calculations of interaction between three different model clusters of kaolinite siloxane surfaces and benzyl alcohol, with emphasis on the effect of size and lattice topology of the cluster on the variation of electron density and magnetic shielding tensor. Model cluster 1 is an ideal silicate tetrahedral surface that consists of 7 hexagonal rings, and model cluster 2 is composed of 7 ditrigonal siloxane rings with crystallographically distinct basal oxygen atoms in the cluster, and finally model cluster 3 has both tetrahedral and octahedral layers. The Mulliken charge analysis shows that siloxane surface of model cluster 3 undergoes the largest electron density transfer after the benzyl alcohol adsorption and that of model cluster 1 is apparently larger than that of model cluster 2. The difference of Mulliken charges of basal oxygen atoms before and after the adsorption is positively correlated with hydrogen bond strength. NMR chemical shielding tensor calculation of clusters without benryl alcohol shows that three different basal oxygen atoms (O3, O4, and O5) in model cluster 2 have the isotropic magnetic shielding tensor as $228.2{\pm}3.9,\;228.9{\pm}3.4,\;and\;222.3{\pm}3.0ppm$, respectively. After the adsorption, the difference of isotropic chemical shift varies from 1 to 5.5 ppm fer model cluster 1 and 2 while model cluster 2 apparently shows larger changes in isotropic chemical shift. The chemical shift of oxygen atoms is also positively correlated with electron density transfer. The current results show that the adsorption of benzyl alcohol on the kaolinite siloxane surfaces can largely be dominated by a weak hydrogen bonding and electrostatic force (charge-charge interaction) and demonstrate the importance of the cluster site and the lattice topology of surfaces on the adsorption behavior of the organic molecules on clay surfaces.

Estimation of Time Difference Using Cross-Correlation in Underwater Environment (수중 환경에서 상호상관을 이용한 시간차이 추정)

  • Lee, Young-Pil;Moon, Yong Seon;Ko, Nak Yong;Choi, Hyun-Taek;Lee, Jeong-Gu;Bae, Young-Chul
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.2
    • /
    • pp.155-160
    • /
    • 2016
  • Recently, underwater acoustic communication (UWAC) has been studied by many scholars and researchers. In order to use UWAC, we need to estimate time difference between the two signals in underwater environment. Typically, there are major three methods to estimate the time-difference between the two signals such as estimating the arrival time of the first non-background segment and calculate the temporal difference, calculating the cross-correlation between the two signal to infer the time-lagged, and estimating the phase delay to infer the time difference. In this paper, we present calculating the cross-correlation between the two signals to infer the time-lagged to apply UWAC. We also present the experimental result of estimating the arrival time by using cross-correlation. We get EXCORR = 0.003055 second as the estimation error in mean absolute difference.

The Assessment of the Breath Hold and the Free Breath Methods about the Blood Flow Evaluation by Using Phase Contrast MRI (위상대조도 자기공명영상을 이용한 심장 혈류평가에 있어서 호흡정지 기법과 비 호흡정지 기법의 비교평가)

  • Kim, Seong-Ho
    • Journal of radiological science and technology
    • /
    • v.39 no.2
    • /
    • pp.149-156
    • /
    • 2016
  • Measurement of cardiac blood flow using the magnetic resonance imaging has been limited due to breathing and involuntary movements of the heart. The present study attempted to improve the accuracy of cardiac blood flow testing through phase contrast magnetic resonance imaging by presenting the adequate breathing method and imaging variables by comparing the measurement values of cardiac blood flow. Each was evaluated by comparing the breath hold retrospective 1NEX and non breath hold retrospective 1-3NEX in the ascending aorta and descending aorta. As a result, the average blood flow amount/velocity of the breath hold retrosepctive 1NEX method in the ascending aorta were $96.17{\pm}19.12ml/sec$, $17.04{\pm}4.12cm/sec$ respectively, which demonstrates a statistically significant difference(p<0.05) with the non-breath hold retrospective method 1NEX of $72.31{\pm}13.27ml$ and $12.32{\pm}3.85$. On the other hand, the average 2NEX blood flow and mean flow velocity is $101.90{\pm}24.09$, $16.84{\pm}4.32$, 3NEX $103.06{\pm}25.49$, $16.88{\pm}4.19$ did not show statistically significant differences(p>0.05).The average blood flow amount/ velocity of the breath hold retrospective 1NEX method in the descending aorta were $76.68{\pm}19.72ml/s$, and $22.23{\pm}4.8$, which did not demonstrate a significant difference in comparison to non-breath hold retrospective method 1-3 NEX. Therefore, the non breath hold retrospective method does not significantly differ in terms of cardiac blood flow in comparison with the breath hold retrospective method in accordance with the increase of NEX, so pediatric patients or patients who are not able to breathe well must have the diagnostic value of their cardiac blood flow tests improved.

Spectral Induced Polarization Characteristics of Rocks in Gwanin Vanadiferous Titanomagnetite (VTM) Deposit (관인 함바나듐 티탄철광상 암석의 광대역 유도분극 특성)

  • Shin, Seungwook
    • Geophysics and Geophysical Exploration
    • /
    • v.24 no.4
    • /
    • pp.194-201
    • /
    • 2021
  • Induced polarization (IP) effect is known to be caused by electrochemical phenomena at interface between minerals and pore water. Spectral induced polarization (SIP) method is an electrical survey to localize subsurface IP anomalies while injecting alternating currents of multiple frequencies into the ground. This method was effectively applied to mineral exploration of various ore deposits. Titanomagnetite ores were being produced by a mining company located in Gonamsan area, Gwanin-myeon, Pocheon-si, Gyeonggi-do, South Korea. Because the ores contain more than 0.4 w% vanadium, the ore deposit is called as Gwanin vanadiferous titanomagnetite (VTM) deposit. The vanadium is the most important of materials in production of vanadium redox flow batteries, which can be appropriately used for large-scale energy storage system. Systematic mineral exploration was conducted to identify presence of hidden VTM orebodies and estimate their potential resources. In geophysical exploration, laboratory geophysical measurement of rock samples is helpful to generate reliable property models from field survey data. Therefore, we performed laboratory SIP data of the rocks from the Gwanin VTM deposit to understand SIP characteristics between ores and host rocks and then demonstrate the applicability of this method for the mineral exploration. Both phase and resistivity spectra of the ores sampled from underground outcrop and drilling cores were different of those of the host rocks consisting of monzodiorite and quartz monzodiorite. Because the phase and resistivity at frequencies below 100 Hz are mainly dependent on the SIP characteristics of the rocks, we calculated mean values of the ores and the host rocks. The average phase values at 0.1 Hz were ores: -369 mrad and host rocks: -39 mrad. The average resistivity values at 0.1 Hz were ores: 16 Ωm and host rocks: 2,623 Ωm. Because the SIP characteristics of the ores were different of those of the host rocks, we considered that the SIP survey is effective for the mineral exploration in vanadiferous titanomagnetite deposits and the SIP characteristics are useful for interpreting field survey data.

Relationships between Topological Structures of Traffic Flows on the Subway Networks and Land Use Patterns in the Metropolitan Seoul (수도권 지하철망 상 통행흐름의 위상학적 구조와 토지이용의 관계)

  • Lee, Keum-Sook;Hong, Ji-Yeon;Min, Hee-Hwa;Park, Jong-Soo
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.10 no.4
    • /
    • pp.427-443
    • /
    • 2007
  • The purpose of this study is to investigate spacio-temporal structures of traffic flows on the subway network in the Metropolitan Seoul, and the relationships between topological structures of traffic flows and land use patterns. In particular we analyze in the topological structures of traffic flows on the subway network in time dimension as well as in spatial dimension. For the purpose, this study utilizes data mining techniques to the one day T-card transaction data of the last four years, which has developed for exploring the characteristics of traffic flows from large scale trip-transaction databases. The topological structures of traffic flows on the subway network has changed considerably during the last four years. The volumes of traffic flows, the travel time and stops per trip have increased until 2006 and decreased again in 2007. The results are visualized by utilizing GIS and analyzed, and thus the spatial patterns of traffic flows are analyzed. The spatial distribution patterns of trip origins and destinations show substantial differences among time zones during a day. We analyze the relationships between traffic flows at subway stops and the geographical variables reflecting land use around them. We obtain 6 log-linear functions from stepwise multiple regression analysis. We test multicollinearity among the variables and autocollelation for the residuals.

  • PDF

Simulation of Separating Isoclinics and Isochromatics from Photoelastic Fringes of a Disk using 8-step Phase Shifting Methodology (광탄성 프린지 위상이동법을 적용한 디스크의 등경 및 등색프린지 분리법에 관한 시뮬레이션)

  • Baek, Tae-Hyun;Kim, Myung-Soo;Cho, Sung-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.2
    • /
    • pp.189-196
    • /
    • 2001
  • Photoelasticity is one of the most widely used methods for whole field stress analysis. In photoelasticity, the difference and the directions of the principal stresses we given isochromatic and isoclinic fringe patterns. Conventionally, principal stress directions are measured manually by relating the polarizer and analyzer of a plane polariscope at the same time. This is known to be the Tardy compensation method. This measurement can be very tedious and time consuming in whole field analysis. It is not possible to separate isoclincs from photoelastic fringes by conventional photoelastic technique. In this study, photoelastic theory is represented by Jones matrices and 4-steps and 8-steps phase shifting methods are described A feasibility study using computer simulation is done to separate isoclincs and isochomatics from photoelastic fringes of a circular disk under diametrical compression. Fringe patterns of the disk are generated using stress optic law. The magnitudes of isoclincs and isochromatics obtained from 8-step phase shifting method are compared with those of theories. From computer simulation, it is verified to separate isoclincs and isochomatics from photoelastic fringes.

  • PDF

Digital Image Watermarking Technique using Scrambled Binary Phase Computer Generated Hologram in Discrete Cosine Transform Domain (DCT영역에서 스크램블된 이진 위상 컴퓨터형성홀로그램을 이용한 디지털 영상 워터마킹 기술)

  • Kim, Cheol-Su
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.3
    • /
    • pp.403-413
    • /
    • 2011
  • In this paper, we proposed a digital image watermarking technique using scrambled binary phase computer generated hologram in the discrete cosine transform(DCT) domain. For the embedding process of watermark. Using simulated annealing algorithm, we would generate a binary phase computer generated hologram(BPCGH) which can reconstruct hidden image perfectly instead of hidden image and encrypt it through the scramble operation. We multiply the encrypted watermark by the weight function and embed it into the DC coefficients in the DCT domain of host image and an inverse DCT is performed. For the extracting process of watermark, we compare the DC coefficients of watermarked image and original host image in the DCT domain and dividing it by the weight function and decrypt it using descramble operation. And we recover the hidden image by inverse Fourier transforming the decrypted watermark. Finally, we compute the correlation between the original hidden image and recovered hidden image to determine if a watermark exits in the host image. The proposed watermarking technique use the hologram information of hidden image which consist of binary values and scramble encryption technique so it is very secure and robust to the various external attacks such as compression, noises and cropping. We confirmed the advantages of the proposed watermarking technique through the computer simulations.

An Effective Crossover Filter Choice of Multi-Way Loudspeaker System (멀티웨이 스피커 시스템의 효과적인 크로스오버 필터 선택)

  • Kang, Seong-Hoon;Jung, Han-Kyo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.3
    • /
    • pp.184-190
    • /
    • 2014
  • Although it is ideal that the sound with the range of 20 ~ 20,000 Hz is produced by the loudspeaker system composing of only one loudspeaker unit, it is almost impossible now. Therefore, the audible frequency range is now produced by the loudspeaker system, which is consisted of more than two loudspeaker units. The multi-way loudspeaker system certainly requires a crossover filter, which is divided the audible frequency into low and high frequency ranges. The crossover frequency of filter usually is in the range of 1 ~ 4 kHz, the frequency range can largely affect to the sound articulation and quality. It is an example that the phase and amplitude at the crossover frequency can be different from each other, due to the variously reasons. Conversely, they can not produce the smooth frequency response due to the different distance between the two loudspeaker units and electrical properties. As a result, the sound articulation and quality can be degraded. Therefore, the phase and amplitude response at the crossover frequency has to be deeply considered, in order to exactly match the woofer and tweeter. In this study, it is proposed the methods which are the flat frequency and phase response to be obtained by adjusting of the delay time between loudspeaker units, and the choice of filter to be considered the roll-off properties of each unit. It is achieved the frequency response with ${\pm}1$ dB, and the sound articulation is also improved.