• Title/Summary/Keyword: 위상 조정 영역 위상

Search Result 33, Processing Time 0.023 seconds

Effect of the Reflectivity of Both Facets and the Phase of a Phase Tuning Section on the Yield of a Multisection Complex-Coupled DFB Laser (양 단면 반사율과 위상 조정 영역의 위상이 다중 영역 Complex-Coupled DFB 레이저의 수율 특성에 미치는 영향)

  • Kim, Tae-Young;Kim, Boo-Gyoun
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.5
    • /
    • pp.323-332
    • /
    • 2007
  • The effect of the reflectivity of both facets and the phase of a phase tuning section on the self-pulsation (SP) characteristics of multisection complex-coupled (CC) DFB lasers is investigated in terms of yield. The lasers are composed of two CC DFB sections and a phase tuning section between them. As the coupling strength and the coupling ratio (CR) decrease, the effect of the reflected fields from both facets and the other DFB section on the mode characteristics of one DFB section increases, so that the yield decreases. As the facet reflectivity increases, the maximum yield and the range of the phase of a phase tuning section with yield more than 60% decrease independent of the coupling strength and CR. The yield characteristics of CR=0.2 are better than those of CR=0.1 with the same coupling strength due to the larger complex coupling effect. The case with ${\mid}{\kappa}L{\mid}=3$ and CR=0.2 shows best yield characteristics among the cases considered in this work.

Effect of the Reflectivity of Both Facets and the Phase of a Phase Tuning Section on the Yield Characteristics of a Multisection Index-Coupled DFB Laser (양 단면 반사율과 위상 조정 영역의 위상이 다중 영역 Index-Coupled DFB 레이저의 수율 특성에 미치는 영향)

  • Kim, Tae-Young;Ryu, Jong-In;Kim, Boo-Gyoun
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.6
    • /
    • pp.548-555
    • /
    • 2006
  • We investigate the effect of the reflectivity of both facets and the phase of a phase tuning section on the self-pulsation (SP) characteristics of multisection index-coupled (IC) DFB lasers composed of two index-coupled DFB sections and a phase tuning section between them in terms of yield. In the case of weak coupling strength, as the reflectivity of both facets increases, the effect of reflected fields from both facets and the other DFB section on the mode characteristics of one DFB section increases. Thus the number of mode hoping increases and yield decreases for the variation of phases of both facets. In the case of strong coupling strength, as the reflectivity of both facets increases, the spatial hole burning effect increases, so that the yield decreases. The maximum yield and the range of the phase of a phase tuning section with yield more than 40% decrease as the facet reflectivity increases irrespective of coupling strength. As the coupling strength increases, the variation of yield for the variation of the phase of a phase tuning section increases and the variation of the phase of a phase tuning section with the maximum yield for the variation of the reflectivity of both facets decreases. The yield characteristics of the cases with the coupling strengths of 2 and 3 are better than those with the coupling strengths of 1.2 and 4.

Effect of the Reflectivity of Both Facets and the Phase of a Phase Tuning Section on the Yield Characteristics of a Multisection Complex-Coupled DFB Laser with Self-Pulsation Frequency of THz Region (양 단면 반사율과 위상 조정 영역의 위상이 Self-Pulsation 주파수가 THz 대역인 다중 영역 Complex-Coupled DFB 레이저의 수율 특성에 미치는 영향)

  • Kim, Tae-Young;Park, Jae-Woo;Kim, Boo-Gyoun
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.3
    • /
    • pp.208-218
    • /
    • 2008
  • We investigate the effect in terms of yield of the reflectivity of both facets and of the phase of a phase tuning section on the self-pulsation (SP) characteristics of multisection complex-coupled (CC) DFB lasers with self-pulsation frequency of the THz region. When the grating phases on both facets of a multisection CC DFB laser are fixed as 0, the variation of SP frequency increases as the reflectivity of both facets increases, while that of SP frequency decreases as the coupling ratio (CR) and the coupling strength increase. For the coupling strength of 3, the range of the phase of a phase tuning section with yields greater than 80% decreases as the CR and the reflectivity of both facets increases. For the coupling strength of 4, the range of the phase of a phase tuning section with yields greater than 80% increases as the CR and the reflectivity of both facets increases.

Analysis of Self-Pulsation Characteristics in Multi-Section Complex-Coupled DFB Lasers With Amplifying Optical Feedback (증폭된 광 귀환을 가자는 다중 전극 복소 결합 DFB 레이저에서 발생되는 self-pulsation 특성 해석)

  • Kim, Sang-Taek;Kim, Tae-Young;Kim, Boo-Gyoun;Leem, Young-Ahn;Park, Kyung-Hyun
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.6
    • /
    • pp.527-534
    • /
    • 2005
  • We investigate the pulsation characteristics in a multi-section DFB laser which is composed of one DFB section, phase tuning section, and gain section. Multi-section DFB lasers with anti-phase (AP) complex-coupled (CC) DFB structure show wide current ranges of gain and phase tuning sections fer stable pulsations compared to those with in-phase CC DFB structure or index-coupled DFB structure. For multi-section DFB lasers with AP CC DFB structure, the current range of a gain section for stable pulsations increases and the tuning range of the pulsation frequency increases as a coupling strength or a gain coupling coefficient increases Also, the tuning range using the phase variation in a phase tuning section increases. For a fixed coupling strength, the current ranges of gain and phase tuning sections for stable pulsations increase and the tuning range of the pulsation frequency increases as the length of a DFB section increases.

Effect of varying the coupling strength and section length on the self-pulsation characteristics of multisection index-coupled DFB lasers (다중 전극 Index-Coupled DFB 레이저에서 결합 세기 및 각 영역의 길이가 Self-Pulsation 동작 특성에 미치는 영향)

  • Kim, Sang-Taek;Kim, Tae-Young;Ji, Sung-Keun;Kim, Boo-Gyoun
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.1
    • /
    • pp.85-98
    • /
    • 2005
  • As the number of compound cavity modes within the stopband of DFB sections decreases, the frequency of mode hopping decreases for the variation of $\Delta$λ$_{B}$, which represents the difference between the Bragg wavelengths of two DFB sections, so that the number of abrupt changes of pulsation frequencies decreases. In addition, the pulsation frequency varies continuously for the variation of the phase in a phase tuning section for a fixed $\Delta$λ$_{B}$. The number of compound cavity modes within the stopband decreases as the length of DFB sections increases and the length of a phase tuning section decreases. Thus stable self-pulsation operations for the variation of $\Delta$λ$_{B}$ and the phase in a phase tuning section could be obtained by proper selection of the coupling strength and the length of each section.ction.

Introduction to System Modeling and Verification of Digital Phase-Locked Loop (디지털 위상고정루프의 시스템 모델링 및 검증 방법 소개)

  • Shinwoong, Kim
    • Journal of IKEEE
    • /
    • v.26 no.4
    • /
    • pp.577-583
    • /
    • 2022
  • Verilog-HDL-based modeling can be performed to confirm the fast operation characteristics after setting the design parameters of each block considering the stability of the system by performing linear phase-domain modeling on the phase-locked loop. This paper proposed Verilog-HDL modeling including DCO noise and DTC nonlinear characteristic. After completing the modeling, the time-domain transient simulation can be performed to check the feasibility and the functionality of the proposed PLL system, then the phase noise result from the system design based on the functional model can be verified comparing with the ideal phase noise graph. As a result of the comparison of simulation time (6 us), the Verilog-HDL-based modeling method (1.43 second) showed 484 times faster than the analog transistor level design (692 second) implemented by TSMC 0.18-㎛.

Study on Common Phase Offset Tracking Scheme for Single Carrier System with Frequency Domain Equalization (단일 반송파 주파수 영역 등화 시스템을 위한 공통 위상 추적 기법 연구)

  • Kim, Young-Je;Park, Jong-Hun;Cho, Jung-Il;Cho, Hyung-Weon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.11C
    • /
    • pp.641-648
    • /
    • 2011
  • Frequency domain equalization is the most promising technology that has relatively low complexity in multipath channel. A frame of single carrier system with frequency domain equalization (SC-FDE) has cyclic prefix to mitigate effect of delay spread. After synchronization and equalization procedure on the SC-FDE system, common phase offset (CPO) that can introduce performance degradation caused by phase mismatch between transmitter and receiver oscillators is remained. In this paper, common phase offset tracking in frequency domain is proposed. To track CPO, constant amplitude zero autocorrelation code sequence as training sequence is adopted. By using numerical results, performance of mean square error is evaluated. The results show that MSE of CPO has similar performance compare to the time-domain estimation and there is no need of domain conversion.

Study on the Interference Phenomena of Nonlinear Optical Signals (비선형 광신호의 간섭현상 연구)

  • 이은성;한재원;박승남;이충희
    • Korean Journal of Optics and Photonics
    • /
    • v.3 no.4
    • /
    • pp.239-243
    • /
    • 1992
  • We have investigeted the interference phenomena of the second harmonic waves of Nd:YAG laser generated at KDP single crystals and the nitrogen CARS signals. To get the phase difference between the successively generated nonlinear optical signals, a phase shifting unit made of BK-7 glass and a high pressure gas cell are used. Coherence lengths of several samples for the nonlinear signals are measured. Adjusting the thickness of the phase shifting unit where the CARS signals make destructive interference completely, the CARS spectrum of nitrogen suppressed over wide wavelength range is obtained. Also, we have observed the change in degree of suppression of the spectrum for the variation of the thickeness of the phase shifting unit.

  • PDF

A CMOS LC VCO with Differential Second Harmonic Output (차동 이차 고조파 출력을 갖는 CMOS LC 전압조정발진기)

  • Kim, Hyun;Shin, Hyun-Chol
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.6 s.360
    • /
    • pp.60-68
    • /
    • 2007
  • A technique is presented to extract differential second harmonic output from common source nodes of a cross-coupled P-& N-FET oscillator. Provided the impedances at the common source nodes are optimized and the fundamental swing at the VCO core stays in a proper mode, it is found that the amplitude and phase errors can be kept within $0{\sim}1.6dB$ and $+2.2^{\circ}{\sim}-5.6^{\circ}$, respectively, over all process/temperature/voltage corners. Moreover, an impedance-tuning circuit is proposed to compensate any unexpectedly high errors on the differential signal output. A Prototype 5-GHz VCO with a 2.5-Hz LC resonator is implemented in $0.18-{\mu}m$ CMOS. The error signal between the differential outputs has been measured to be as low as -70 dBm with the aid of the tuning circuit. It implies the push-push outputs are satisfactorily differential with the amplitude and phase errors well less than 0.34 dB and $1^{\circ}$, respectively.

Fabrication of Bragg grating using a rhombic type mirror setup (마름모형 반사각 조정장치를 이용한 브래그격자 제작)

  • Kim, Hyeong-Chan;Han, Jun-Mo;Park, Dong-Yeong;Yun, Jae-Sun;Lee, Jae-Beom;Baek, Se-Jong;Im, Gi-Geon
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2006.07a
    • /
    • pp.497-498
    • /
    • 2006
  • 다양한 브래그 파장의 광섬유 격자 제작을 위해 위상마스크와 두 개의 반사경이 부착된 마름모형 반사각 조정장치를 사용하여 간섭계 광학장치를 구성하였다. $1572{\sim}1614$ nm의 파장영역에서, FWHM 폭은 0.4 nm, 30 dB이상의 최소 투과율을 갖는 브래그격자 제작결과를 보고한다.

  • PDF