• 제목/요약/키워드: 웹 정보시스템

검색결과 5,835건 처리시간 0.033초

다중 키워드 검색에 적합한 동등조인 연산 결과의 동적 관리 기법 (Dynamic Management of Equi-Join Results for Multi-Keyword Searches)

  • 임성채
    • 정보처리학회논문지A
    • /
    • 제17A권5호
    • /
    • pp.229-236
    • /
    • 2010
  • 인터넷이나 기업체 안에서 생성되는 문서의 수가 빠르게 증가하고 있고 이에 따라 효율적인 문서 검색 서비스의 중요성도 함께 커지고 있다. 이런 검색 환경에서 사용자의 검색 질의를 미리 예측할 수 없기 때문에 문서 내의 키워드를 자동 추출하여 색인어로 사용하는 전문검색(full-text search)이 일반적으로 적용된다. 전문검색을 위해 생성된 색인 파일의 크기는 문서 수 증가로 대용량화 되고, 이런 대용량 색인에 대한 다중 키워드 질의 처리에는 과도한 디스크 비용이 초래될 수 있다. 논문에서는 이런 비용 문제를 해결하기 위해 대용량 문서의 전문검색 시스템에서 다중 키워드 질의를 효율적으로 처리할 수 있게 하는 색인 파일 구조 및 관리 기법을 제안한다. 제안된 방법은 다중 키워드 검색에 적합한 것으로 알려진 역파일을 기본 색인 구조로 하며, 질의 처리의 조인 연산과 랭킹 연산에 적합하도록 색인 파일을 계층화한다. 이를 바탕으로 다중 키워드 질의를 구성할 확률이 높은 키워드 쌍에 대한 조인 연산 결과를 주기억장치 공간에 동적으로 저장함으로써 디스크 사용량을 크게 줄일 수 있다. 논문에서는 제안된 기법의 우수성을 보이기 위해 디스크 비용 모델에 기반한 성능 비교도 수행한다.

사물인터넷 환경에서 대용량 스트리밍 센서데이터의 실시간·병렬 시맨틱 변환 기법 (Real-time and Parallel Semantic Translation Technique for Large-Scale Streaming Sensor Data in an IoT Environment)

  • 권순현;박동환;방효찬;박영택
    • 정보과학회 논문지
    • /
    • 제42권1호
    • /
    • pp.54-67
    • /
    • 2015
  • 최근 사물인터넷 환경에서는 발생하는 센서데이터의 가치와 데이터의 상호운용성을 증진시키기 위해 시맨틱웹 기술과의 접목에 대한 연구가 활발히 진행되고 있다. 이를 위해서는 센서데이터와 서비스 도메인 지식의 융합을 위한 센서데이터의 시맨틱화는 필수적이다. 하지만 기존의 시맨틱 변환기술은 정적인 메타데이터를 시맨틱 데이터(RDF)로 변환하는 기술이며, 이는 사물인터넷 환경의 실시간성, 대용량성의 특징을 제대로 처리할 수 없는 실정이다. 따라서 본 논문에서는 사물인터넷 환경에서 발생하는 대용량 스트리밍 센서데이터의 실시간 병렬처리를 통해 시맨틱 데이터로 변환하는 기법을 제시한다. 본 기법에서는 시맨틱 변환을 위한 변환규칙을 정의하고, 정의된 변환규칙과 온톨로지 기반 센서 모델을 통해 실시간 병렬로 센서데이터를 시맨틱 변환하여 시맨틱 레파지토리에 저장한다. 성능향상을 위해 빅데이터 실시간 분석 프레임워크인 아파치 스톰을 이용하여, 각 변환작업을 병렬로 처리한다. 이를 위한 시스템을 구현하고, 대용량 스트리밍 센서데이터인 기상청 AWS 관측데이터를 이용하여 제시된 기법에 대한 성능평가를 진행하여, 본 논문에서 제시된 기법을 입증한다.

Establishment and service of user analysis environment related to computational science and engineering simulation platform

  • Kwon, Yejin;Jeon, Inho;On, Noori;Seo, Jerry H.;Lee, Jongsuk R.
    • 인터넷정보학회논문지
    • /
    • 제21권6호
    • /
    • pp.123-132
    • /
    • 2020
  • 계산과학공학 시뮬레이션 실행 환경을 웹 기반 플랫폼으로 제공하는 EDISON 플랫폼은 전문적인 계산과학공학 연구자 뿐만 아니라 일반 학생이나 사용자에게 다양한 분석 환경을 제공해 줄 수 있다. 이러한 시뮬레이션 환경의 사용자 확대 및 서비스 분석을 위해 매년 EDISON 플랫폼에서는 경진대회를 개최하고 사용자의 시뮬레이션 환경 요구사항을 분석하여 플랫폼의 경쟁성과 우수성을 증대하기 위해 노력해왔다. 계산과학공학 분야의 경진대회 시스템은 기존의 EDISON 플랫폼에서 사용중인 시뮬레이션 서비스와 연계되어 사용자에게 제공되고 있다. 이전까지의 EDION 경진대회 서비스는 시뮬레이션 서비스와 독립적으로 동작하여 최종 사용자 심사 및 중간 시뮬레이션 결과 확인 등의 서비스를 연계하지 못했다. 이러한 요구를 충족하기 위해 현재 서비스 중인 계산과학공학 경진대회의 서비스는 기존의 계산과학공학 시뮬레이션 서비스와 연계되어 사용자와 다양한 서비스 이용자에게 연계된 서비스를 제공할 수 있게 되었다. 또한 경진대회를 진행하고 참가하는 모든 사용자에 대한 다양한 분석을 통해 서비스를 제한적으로 제공함으로써 서비스 리소스에 대한 효율을 높일 수 있었다. 본 논문에서는 이러한 사용자의 시뮬레이션 환경 및 사용 환경 분석을 진행함으로써, 실제 사용자들에게 필요한 서비스와 사용자의 분석을 통해 경진대회 플랫폼을 제공하고 시뮬레이션 실행 환경에 대한 개선 방안에 대해 분석을 진행하였다.

빅데이터 토픽모델링과 감성분석을 활용한 물공급과정에서의 수질사고 기사 분석 (Analysis of articles on water quality accidents in the water distribution networks using big data topic modelling and sentiment analysis)

  • 홍성진;유도근
    • 한국수자원학회논문집
    • /
    • 제55권spc1호
    • /
    • pp.1235-1249
    • /
    • 2022
  • 본 연구에서는 웹 크롤링 방법을 이용한 자료수집, 텍스트 마이닝을 활용한 데이터 분석과 같은 빅데이터 분석기법을 이용하여 국내 상수도 수질사고에 대한 전개양상 분석을 수행하였다. 상수도 시스템의 수질사고 빅데이터 뉴스의 추출을 위한 웹크롤링 기법을 적용하고 정확한 수질사고 뉴스를 획득하고자 알고리즘을 절차화하여 제시하였다. 또한 대규모 수질사고의 경우 사고발생에 따른 사고인지, 사고확산, 사고대응, 사고해결 등과 같은 전개양상이 나타나므로, 각 단계에 따른 적절한 뉴스기사를 추출하고, 이에 따른 정보분석을 실시하였다. 즉, 각 단계 별 주요 키워드, 감성분석을 통한 수질사고 전개양상분석을 사례기반으로 상세히 실시하고 그 의미를 분석, 도출하였다. 제안된 방법론을 2020년 발생한 인천광역시 유충사고기간에 적용하여 분석하였다. 그 결과, 수질사고와 같은 소비자에게 직접적인 영향을 미치는 정보의 공개가 제한된 상황에서 사고발생시 장기간의 피해 지속성이 있는 수질사고에 대한 뉴스 기사 언론보도의 논조 및 소비자의 긍부정도가 시간에 따라 명확히 변화됨을 확인할 수 있었다. 이것은 공급자 입장에서의 수질사고의 전개양상은 시설물의 빠른 복구도 매우 중요하지만 소비자의 긍정도를 높이기 위한 소비자 중심의 정책마련의 필요성을 제시하고 있다.

농업기상재해 조기경보서비스의 전국 확대에 따른 경제적 타당성 분석 (Economic Feasibility Analysis of Nationwide Expansion of Agro-meteorological Early Warning Service for Weather Risk Management in Korea)

  • 서상택;정윤희;김수진;심교문
    • 한국농림기상학회지
    • /
    • 제25권3호
    • /
    • pp.236-244
    • /
    • 2023
  • 본 연구는 조기경보서비스의 전국 확대에 따른 서비스 제공의 경제적 타당성을 검토하는데 목적이 있다. 분석방법으로는 비용편익분석법의 하나인 순현재가치법을 준용하였다. 순현재가치를 구성하는 편익항목으로 농작물재해보험 실적자료를 이용한 피해경감액과 농가의 조기경보서비스 이용에 따른 지불의사액을 이용하였으며, 비용항목은 시스템 구축 및 유지비용, 그리고 문자발송 비용 등을 포함하였다. 분석결과, 조기경보서비스의 전국 확대는 경제적 타당성이 있으며, 그 효과는 참여농가의 문자이용 수준(10%~40%까지, 10%p간격)에 따라 달라지는 것으로 분석되었다. 향후, 조기경보서비스 참여농가가 증가할 경우 조기경보서비스의 경제적 효과는 더욱 커질 것으로 예상된다. 효과적인 정보의 전달 및 활용을 위해 문자뿐만 아니라 앱이나 웹을 통한 정보전달 수단을 적극 활용함으로써 조기경보서비스의 경제적 효과를 더욱 증진시킬 필요가 있다.

조선시대 선생안 온톨로지 설계 (Ontology Design for the Register of Officials(先生案) of the Joseon Period)

  • 김사현
    • 동양고전연구
    • /
    • 제69호
    • /
    • pp.115-146
    • /
    • 2017
  • 본고는 조선시대 선생안의 디지털 아카이브를 위한 온톨로지(Ontology) 설계에 관한 연구이다. 선생안(先生案)은 조선시대 각 관청에서 소속 관원(官員)의 인적사항 및 인사이동을 기록한 일종의 인명부(人名簿)이다. 일반적으로 관원의 성명(姓名), 생년(生年), 자(字), 본관(本貫) 등의 인적사항 정보와 관직(官職), 제배일(除拜日), 도임일(到任日), 체임일(遞任日), 체임사유(遞任事由) 등의 인사이동 정보가 기록되어 있다. 현전(現傳)하고 있는 선생안은 국 내외 도서관 및 박물관에 소장되어 있으며 그 수는 176종으로 알려져 있다. 이 중에서 한국학중앙연구원 장서각에 소장된 47건의 선생안을 대상으로 선생안의 내용 및 구조를 검토하고, 선생안의 소장처, 선생안 기록 주체인 관청, 기록된 관직, 관원 등 관련 있는 주변의 내용을 담아낼 수 있는 온톨로지를 설계한다. 조선시대 선생안 온톨로지는 실물자료인 선생안 소장정보와 선생안에 기록된 내용의 특징을 반영해 관원, 관청, 인사이동에 초점을 맞추어 설계하였다. 온톨로지 설계는 대상자원을 클래스(Class)로 범주화 하고, 범주에 속하는 개체들(Individuals)은 공통의 속성(Attribute)를 갖도록 하였다. 그리고 각각의 개체들은 다른 개체와의 관계(Relation)를 명시적으로 표현할 수 있는 의미적인 관계어를 정의하였다. 클래스는 '선생안', '인물', '관청', '관직', '장소', '과거(科擧)', '기록', '개념' 등 8개로 범주화하였다. 관계, 속성의 설계는 기존에 설계되어 활용되고 있는 '더블린코어(Doublin Core)', '유로피아나데이터모델(Europeana Data Mode)', 'CIDOC-CRM', '과거 합격자 데이터베이스를 위한 데이터 모델' 등의 어휘를 참조하여 설계하였다. 기존 데이터모델에서 설계한 어휘를 사용한 경우에는 해당 데이터모델의 이름 공간(Namespace)을 사용하였으며, 필요한 경우 필자가 관계를 정의하였다. 설계한 온톨로지는 명릉선생안(明陵先生案)으로 구현 예시를 보이고, 하나의 선생안에서 다수의 선생안으로 대상을 확대하여 정보를 입력하였을 때 기대되는 효과와 활용 방안에 대해 모색해 보았다. 조선시대 선생안 온톨로지는 현전하는 선생안 176종 모두를 검토하여 설계된 것이 아니기 때문에 완벽한 온톨로지로써 기능하기에는 무리가 있다. 지속적으로 선생안의 정보가 입력되는 과정에서 온톨로지 모델의 수정 및 보완이 필요하며, 그 지향점은 선생안에 기록된 정보들을 체계적으로 정리하기 위한 것도 있지만, 선생안에서 확인되는 인물, 관직 등의 정보 요소가 이미 서비스 구축 되었거나, 향후 제작될 조선시대 인물에 관한 데이터베이스 혹은 아카이브와 연계될 수 있는 것도 고려해야 할 것이다. 조선시대 선생안 온톨로지로 입력된 정보는 조선시대 관청 운영과 인사시스템을 볼 수 있는 일면으로 활용되고, 이미 구축된 여타 조선시대와 관련된 데이터베이스와 연계되어 조선시대의 정치 경제 사회 문화를 종합적으로 이해하는 자료의 하나로 기능하기를 기대한다.

온라인 주식 포럼의 핫토픽 탐지를 위한 감성분석 모형의 개발 (Development of Sentiment Analysis Model for the hot topic detection of online stock forums)

  • 홍태호;이태원;리징징
    • 지능정보연구
    • /
    • 제22권1호
    • /
    • pp.187-204
    • /
    • 2016
  • 소셜 미디어를 이용하는 사용자들이 직접 작성한 의견 혹은 리뷰를 이용하여 상호간의 교류 및 정보를 공유하게 되었다. 이를 통해 고객리뷰를 이용하는 오피니언마이닝, 웹마이닝 및 감성분석 등 다양한 연구분야에서의 연구가 진행되기 시작하였다. 특히, 감성분석은 어떠한 토픽(주제)를 기준으로 직접적으로 글을 작성한 사람들의 태도, 입장 및 감성을 알아내는데 목적을 두고 있다. 고객의 의견을 내포하고 있는 정보 혹은 데이터는 감성분석을 위한 핵심 데이터가 되기 때문에 토픽을 통한 고객들의 의견을 분석하는데 효율적이며, 기업에서는 소비자들의 니즈에 맞는 마케팅 혹은 투자자들의 시장동향에 따른 많은 투자가 이루어지고 있다. 본 연구에서는 중국의 온라인 시나 주식 포럼에서 사용자들이 직접 작성한 포스팅(글)을 이용하여 기존에 제시된 토픽들로부터 핫토픽을 선정하고 탐지하고자 한다. 기존에 사용된 감성 사전을 활용하여 토픽들에 대한 감성값과 극성을 분류하고, 군집분석을 통해 핫토픽을 선정하였다. 핫토픽을 선정하기 위해 k-means 알고리즘을 이용하였으며, 추가로 인공지능기법인 SOM을 적용하여 핫토픽 선정하는 절차를 제시하였다. 또한, 로짓, 의사결정나무, SVM 등의 데이터마이닝 기법을 이용하여 핫토픽 사전 탐지를 하는 감성분석을 위한 모형을 개발하여 관심지수를 통해 선정된 핫토픽과 탐지된 핫토픽을 비교하였다. 본 연구를 통해 핫토픽에 대한 정보 제공함으로써 최신 동향에 대한 흐름을 알 수 있게 되고, 주식 포럼에 대한 핫토픽은 주식 시장에서의 투자자들에게 유용한 정보를 제공하게 될 뿐만 아니라 소비자들의 니즈를 충족시킬 수 있을 것이라 기대된다.

사회문제 해결형 기술수요 발굴을 위한 키워드 추출 시스템 제안 (A Proposal of a Keyword Extraction System for Detecting Social Issues)

  • 정다미;김재석;김기남;허종욱;온병원;강미정
    • 지능정보연구
    • /
    • 제19권3호
    • /
    • pp.1-23
    • /
    • 2013
  • 융합 R&D가 추구해야 할 바람직한 방향은 이종 기술 간의 결합에 의한 맹목적인 신기술 창출이 아니라, 당면한 주요 문제를 해결함으로써 사회적 니즈를 충족시킬 수 있는 기술을 개발하는 것이다. 이와 같은 사회문제 해결형 기술 R&D를 촉진하기 위해서는 우선 우리 사회에서 주요 쟁점이 되고 있는 문제들을 선별해야 한다. 그런데 우선적이고 중요한 사회문제를 분별하기 위해 전문가 설문조사나 여론조사 등 기존의 사회과학 방법론을 사용하는 것은 참여자의 선입견이 개입될 수 있고 비용이 많이 소요된다는 한계를 지닌다. 기존의 사회과학 방법론이 지닌 문제점을 보완하기 위하여 본 논문에서는 사회적 이슈를 다루고 있는 대용량의 뉴스기사를 수집하고 통계적인 기법을 통하여 사회문제를 나타내는 키워드를 추출하는 시스템의 개발을 제안한다. 2009년부터 최근까지 3년 동안 10개 주요 언론사에서 생산한 약 백 30만 건의 뉴스기사에서 사회문제를 다루는 기사를 식별하고, 한글 형태소 분석, 확률기반의 토픽 모델링을 통해 사회문제 키워드를 추출한다. 또한 키워드만으로는 정확한 사회문제를 파악하기 쉽지 않기 때문에 사회문제와 연관된 키워드와 문장을 찾아서 연결하는 매칭 알고리즘을 제안하다. 마지막으로 사회문제 키워드 비주얼라이제이션 시스템을 통해 시계열에 따른 사회문제 키워드를 일목요연하게 보여줌으로써 사회문제를 쉽게 파악할 수 있도록 하였다. 특히 본 논문에서는 생성확률모델 기반의 새로운 매칭 알고리즘을 제안한다. 대용량 뉴스기사로부터 Latent Dirichlet Allocation(LDA)와 같은 토픽 모델 방법론을 사용하여 자동으로 토픽 클러스터 세트를 추출할 수 있다. 각 토픽 클러스터는 연관성 있는 단어들과 확률값으로 구성된다. 그리고 도메인 전문가는 토픽 클러스터를 분석하여, 각 토픽 클러스터의 레이블을 결정하게 된다. 이를 테면, 토픽 1 = {(실업, 0.4), (해고, 0.3), (회사, 0.3)}에서 토픽 단어들은 실업문제와 관련있으며, 도메인 전문가는 토픽 1을 실업문제로 레이블링 하게 되고, 이러한 토픽 레이블은 사회문제 키워드로 정의한다. 그러나 이와 같이 자동으로 생성된 사회문제 키워드를 분석하여 현재 우리 사회에서 어떤 문제가 발생하고 있고, 시급히 해결해야 될 문제가 무엇인지를 파악하기란 쉽지 않다. 따라서 제안된 매칭 알고리즘을 사용하여 사회문제 키워드를 요약(summarization)하는 방법론을 제시한다. 우선, 각 뉴스기사를 문단(paragraph) 단위로 세그먼트 하여 뉴스기사 대신에 문단 세트(A set of paragraphs)를 가지게 된다. 매칭 알고리즘은 각 토픽 클러스터에 대한 각 문단의 확률값을 측정하게된다. 이때 토픽 클러스터의 단어들과 확률값을 이용하여 토픽과 문단이 얼마나 연관성이 있는지를 계산하게 된다. 이러한 과정을 통해 각 토픽은 가장 연관성이 있는 문단들을 매칭할 수 있게 된다. 이러한 매칭 프로세스를 통해 사회문제 키워드와 연관된 문단들을 검토함으로써 실제 우리 사회에서 해당 사회문제 키워드와 관련해서 구체적으로 어떤 사건과 이슈가 발생하는 지를 쉽게 파악할 수 있게 된다. 또한 매칭 프로세스와 더불어 사회문제 키워드 가시화를 통해 사회문제 수요를 파악하려는 전문가들은 웹 브라우저를 통해 편리하게 특정 시간에 발생한 사회문제가 무엇이며, 구체적인 내용은 무엇인지를 파악할 수 있으며, 시간 순서에 따른 사회이슈의 변동 추이와 그 원인을 알 수 있게 된다. 개발된 시스템을 통해 최근 3년 동안 국내에서 발생했던 다양한 사회문제들을 파악하였고 개발된 알고리즘에 대한 평가를 수행하였다(본 논문에서 제안한 프로토타입 시스템은 http://dslab.snu.ac.kr/demo.html에서 이용 가능함. 단, 구글크롬, IE8.0 이상 웹 브라우저 사용 권장).

온톨로지 기반의 사용자 의도를 고려한 맞춤형 검색 서비스 (Ontology-based User Customized Search Service Considering User Intention)

  • 김수경;김건우
    • 지능정보연구
    • /
    • 제18권4호
    • /
    • pp.129-143
    • /
    • 2012
  • 웹 기술의 급속한 발전은 기업들이 관리해야 하는 정보량의 폭발적인 증가를 초래하였다. 이와 더불어 보다 정확한 정보를 찾기 위한 검색 엔진 솔루션 시장의 규모도 더불어 크게 증가하였다. 하지만 대부분의 검색엔진들은 사용자의 검색 의도를 고려하지 않고 사용자가 입력한 특정 키워드를 포함하는 문서들을 반환하는 방법을 채택하고 있어, 실제 사용자가 원하는 정보를 찾는데 까지는 부가적인 시간과 노력이 요구된다. 본 연구에서는 이러한 문제를 해결 하기 위한 중요 기술인 적합성을 만족시키기 위해 재현율과 정확율을 높일 수 있는 방법을 제안하였다. 우선 검색어의 재현율을 높일 수 있도록 유사어 관계 확장을 위한 온톨로지 스키마 모델을 제안하고 이를 기반으로 한 추론을 통해 검색어의 확장을 제시하였다. 확장된 검색어들을 이용하여 문서 검색을 하기 위한 다단계 유사도 검색 순위화 알고리즘을 제안하였다. 설계된 온톨로지 스키마와 온톨로지 저장소의 데이터를 기반으로 추론과 유사도 검색 순위화 엔진이 포함된 웹사이트 형식의 사용자 의도 적응형 검색 솔루션을 구현하였다. 구현된 검색 솔루션을 통해 다양한 검색어를 입력하여 제안 방법의 타당성을 입증하였고 사용자 의도를 고려한 맞춤형 검색 솔루션의 필요성을 설명하였다.

댓글 분석을 통한 19대 한국 대선 후보 이슈 파악 및 득표율 예측 (Issue tracking and voting rate prediction for 19th Korean president election candidates)

  • 서대호;김지호;김창기
    • 지능정보연구
    • /
    • 제24권3호
    • /
    • pp.199-219
    • /
    • 2018
  • 인터넷의 일상화와 각종 스마트 기기의 보급으로 이용자들로 하여금 실시간 의사소통이 가능하게 하여 기존의 커뮤니케이션 양식이 새롭게 변화되었다. 인터넷을 통한 정보주체의 변화로 인해 데이터는 더욱 방대해져서 빅데이터라 불리는 정보의 초대형화를 야기하였다. 이러한 빅데이터는 사회적 실제를 이해하기 위한 새로운 기회로 여겨지고 있다. 특히 텍스트 마이닝은 비정형 텍스트 데이터를 이용해 패턴을 탐구하여 의미있는 정보를 찾아낸다. 텍스트 데이터는 신문, 도서, 웹, SNS 등 다양한 곳에 존재하기 때문에 데이터의 양이 매우 다양하고 방대하여 사회적 실제를 이해하기 위한 데이터로 적합하다. 본 연구는 한국 최대 인터넷 포털사이트 뉴스의 댓글을 수집하여 2017년 19대 한국 대선을 대상으로 연구를 수행하였다. 대선 선거일 직전 여론조사 공표 금지기간이 포함된 2017년 4월 29일부터 2017년 5월 7일까지 226,447건의 댓글을 수집하여 빈도분석, 연관감성어 분석, 토픽 감성 분석, 후보자 득표율 예측을 수행하였다. 이를 통해 각 후보자들에 대한 이슈를 분석 및 해석하고 득표율을 예측하였다. 분석 결과 뉴스 댓글이 대선 후보들에 대한 이슈를 추적하고 득표율을 예측하기에 효과적인 도구임을 보여주었다. 대선 후보자들은 사회적 여론을 객관적으로 판단하여 선거유세 전략에 반영할 수 있고 유권자들은 각 후보자들에 대한 이슈를 파악하여 투표시 참조할 수 있다. 또한 후보자들이 빅데이터 분석을 참조하여 선거캠페인을 벌인다면 국민들은 자신들이 원하는 바가 후보자들에게 피력, 반영된다는 것을 인지하고 웹상에서 더욱 적극적인 활동을 할 것이다. 이는 국민의 정치 참여 행위로써 사회적 의의가 있다.