• Title/Summary/Keyword: 웹 이용 로그 분석

Search Result 165, Processing Time 0.033 seconds

Web Attack Classification via WAF Log Analysis: AutoML, CNN, RNN, ALBERT (웹 방화벽 로그 분석을 통한 공격 분류: AutoML, CNN, RNN, ALBERT)

  • Youngbok Jo;Jaewoo Park;Mee Lan Han
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.4
    • /
    • pp.587-596
    • /
    • 2024
  • Cyber Attack and Cyber Threat are getting confused and evolved. Therefore, using AI(Artificial Intelligence), which is the most important technology in Fourth Industry Revolution, to build a Cyber Threat Detection System is getting important. Especially, Government's SOC(Security Operation Center) is highly interested in using AI to build SOAR(Security Orchestration, Automation and Response) Solution to predict and build CTI(Cyber Threat Intelligence). In this thesis, We introduce the Cyber Threat Detection System by analyzing Network Traffic and Web Application Firewall(WAF) Log data. Additionally, we apply the well-known TF-IDF(Term Frequency-Inverse Document Frequency) method and AutoML technology to classify Web traffic attack type.

Web Log Analysis Technique using Fuzzy C-Means Clustering (Fuzzy C-Means클러스터링을 이용한 웹 로그 분석기법)

  • 김미라;곽미라;조동섭
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.04b
    • /
    • pp.550-552
    • /
    • 2002
  • 플러스터링이란 주어진 데이터 집합의 패턴들을 비슷한 성실을 가지는 그룹으로 나누어 패턴 상호간의 관계를 정립하기 위한 방법론으로, 지금가지 이를 위한 많은 알고리즘들이 개발되어 왔으며, 패턴인식, 영상 처리 등의 여러 공학 분야에 널리 적용되고 있다. FCM(Fuzzy C-Means) 알고리즘은 최소자승 기준함수(least square criterion function)에 퍼지이론을 적용만 목적함수의 반복최적화(iterative optimization)에 기반을 둔 방식으로, 하드 분할에 의한 기존의 클러스터링 방법이 승자(winner take all) 형태의 방법론을 취하는데 비하여, 각 패턴이 특정 클러스터에 속하는 소속정도를 줌으로써 보다 정확한 정보를 형성하도록 도와준다. 본 논문에서는 FCM 기법을 이용한 웹로그 분석을 하고자 한다.

  • PDF

The personalized web page using the Users clustering method (사용자 군집을 이용한 개인화 된 웹 페이지 추천)

  • 이은경;이기현;조근식
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.04b
    • /
    • pp.241-243
    • /
    • 2002
  • 기존의 웹 로그를 이용한 추천 System에서의 추천 문서 집합은 웹 페이지의 연관성과 웹 문서 사이의 거리를 이용하여 사용자들에게 추천 문서 집합을 제공해 주는 방식을 사용하였다. 이 방법에 의하면 추천 폐이지로 제공되는 페이지는 사용자별 연관성이 고려되지 않으므로 모든 사용자들이 웹 페이지의 연관성안을 이용한 폐이지를 추천 받는다. 따라서 처음 웹사이트를 방문한 새로운 사용자들에게는 추천해주는 폐이지는 사용자가 보고 있는 웹 페이지의 연관성에 의한 웹 페이지만을 추천 받게 되므로 생각하지 못했던 폐이지나 비슷한 취향을 가진 사용자들이 방문을 했던 페이지에 대해서는 추천 받지 못한다는 문제점을 가지고 있다. 따라서 본 논문에서는 동일한 폐이지를 방문한 사용자별로 클러스터링 하여 같은 그룹에 속한 사용자들의 브라우징 패턴 정보를 발견, 분석화 하여 DB에 저장하였으며, 새로운 사용자에 대해서 웹 페이지 추천 집합을 제공하였다.

  • PDF

Analysis of Korean Patent & Trademark Retrieval Query Log to Improve Retrieval and Query Reformulation Efficiency (질의로그 데이터에 기반한 특허 및 상표검색에 관한 연구)

  • Lee, Jee-Yeon;Paik, Woo-Jin
    • Journal of the Korean Society for information Management
    • /
    • v.23 no.2
    • /
    • pp.61-79
    • /
    • 2006
  • To come up with the recommendations to improve the patent & trademark retrieval efficiency, 100,016 patent & trademark search requests by 17,559 unique users over a period of 193 days were analyzed. By analyzing 2,202 multi-query sessions, where one user issuing two or more queries consecutively, we discovered a number of retrieval efficiency improvements clues. The session analysis result also led to suggestions for new system features to help users reformulating queries. The patent & trademark retrieval users were found to be similar to the typical web users in certain aspects especially in issuing short queries. However, we also found that the patent & trademark retrieval users used Boolean operators more than the typical web search users. By analyzing the multi-query sessions, we found that the users had five intentions in reformulating queries such as paraphrasing, specialization, generalization, alternation, and interruption, which were also used by the web search engine users.

Personalized Advertisement Service Method Using Web Log Mining (웹로그 마이닝을 이용한 개인화 광고 서비스 기법)

  • Kim, Seok-Hun;Kim, Eun-Soo
    • The Journal of Korean Association of Computer Education
    • /
    • v.8 no.1
    • /
    • pp.117-127
    • /
    • 2005
  • Numerous internet pop advertisement are being provided according to the rapid development of e-commercial and a rise in users. However, it has not been based on analysis of users' inclination but just one-sided providing. With that reason, many web-site provider want to advertis e more efficient and distinguished Internet-advertisement as analyzing Server's Log accessed. In this thesis, we have studied and tested relatively simply adoption system to provide personalized advertisement service. In order to influence personal disposition to system as the most effective way, it first of all uses History files as source data and after refining it, it can search not only visitors' inclination but also the others' visit-list on the other server. As a result of it, it can make advertisement more reality and activity.

  • PDF

Design of Enhanced Mash Up for Data Availability Using Life Log Data Collection Algorithm (라이프로그 데이터 수집 알고리즘을 이용한 데이터 가용성 향상 매시업 설계)

  • Yang, Seung-Su;Park, Seok-Cheon
    • Annual Conference of KIPS
    • /
    • 2013.11a
    • /
    • pp.577-579
    • /
    • 2013
  • 본 논문에서는 라이프스타일을 포함한 라이프로그기반의 다차원적인 정보를 OpenAPI를 사용하여 사용자 입력이나, 센싱, 웹 등을 통해서 추출된 데이터들의 가용성을 높이고자 기존의 OpenAPI를 이용한 MashUP에 대해 조사 및 분석하여 통합 데이터 취합 매시업을 설계 하였다.

User Information Needs Analysis based on Query Log Big Data of the National Archives of Korea (국가기록원 질의로그 빅데이터 기반 이용자 정보요구 유형 분석)

  • Baek, Ji-yeon;Oh, Hyo-Jung
    • Journal of the Korean Society for information Management
    • /
    • v.36 no.4
    • /
    • pp.183-205
    • /
    • 2019
  • Among the various methods for identifying users's information needs, Log analysis methods can realistically reflect the users' actual search behavior and analyze the overall usage of most users. Based on the large quantity of query log big data obtained through the portal service of the National Archives of Korea, this study conducted an analysis by the information type and search result type in order to identify the users' information needs. The Query log used in analysis were based on 1,571,547 query data collected over a total of 141 months from 2007 to December 2018, when the National Archives of Korea provided search services via the web. Furthermore, based on the analysis results, improvement methods were proposed to improve user search satisfaction. The results of this study could actually be used to improve and upgrade the National Archives of Korea search service.

Adaptive Web Search based on User Web Log (사용자 웹 로그를 이용한 적응형 웹 검색)

  • Yoon, Taebok;Lee, Jee-Hyong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.11
    • /
    • pp.6856-6862
    • /
    • 2014
  • Web usage mining is a method to extract meaningful patterns based on the web users' log data. Most existing patterns of web usage mining, however, do not consider the users' diverse inclination but create general models. Web users' keywords can have a variety of meanings regarding their tendency and background knowledge. This study evaluated the extraction web-user's pattern after collecting and analyzing the web usage information on the users' keywords of interest. Web-user's pattern can supply a web page network with various inclination information based on the users' keywords of interest. In addition, the Web-user's pattern can be used to recommend the most appropriate web pages and the suggested method of this experiment was confirmed to be useful.

A Personalized Extracting Method using Session and Object Information (세션과 객체 정보를 이용한 개인화된 로그 추출기법)

  • Kim, Min-Sook;Park, Myong-Soon
    • Annual Conference of KIPS
    • /
    • 2004.05a
    • /
    • pp.89-92
    • /
    • 2004
  • 웹 로그에는 개별 사용자를 식별할 수 있는 사용자 정보와 세션 정보가 포함되어 사용자 식별과 해당 URL은 알 수 있지만, 그 URL에 해당하는 페이지내에 어느 객체에 관심이 있어 클릭하는지 알 수 없고, 페이지내에서 외부 사이트로의 링크 부분을 클릭했을 시 로그 파일에 기록이 되지 않는다. 본 연구에서는 세션과 사용자 중심의 로그 기록 방식에 객체를 추가함으로써 복잡하고 다양해지는 객체 요소(동영상, 오디오, 플래시 등)가 포함된 웹사이트에서는 객체 중심의 로그 기록 방식이 고객의 행동 패턴을 분석하여 세분화된 개인화 서비스에 보다 효율적임을 관찰하였다.

  • PDF

Dynamic Web Documents Recommendation System Using User-Profile (사용자 관심도를 반영한 동적 웹 문서 추천 시스템)

  • 김병진;최현우;김용성
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10b
    • /
    • pp.136-138
    • /
    • 2001
  • 인터넷 이용의 급속한 증가로 웹사이트의 증가뿐만 아니라 웹사이트 내의 웹 문서도 급속한 증가를 보이고 있다. 따라서 이를 효과적으로 사용자들에게 보여주기 위한 동적인 추천 시스템들이 많이 제안되고 있다. 그러나 이러한 추천 시스템들은 전체 사용자들의 브라우징 패턴이나 전체 웹 문서들의 연관성만을 고려하여 서비스를 제공함으로써 개인 사용자들의 관심도를 고려하지 않은 문제점이 있다. 이에 본 논문에서는 웹사이트에 남게되는 로그파일의 분석을 이용한 사용자별 브라우징 패턴과 웹 페이지의 액세스 타임의 측정을 통해, 사용자의 관심도를 측정한다. 그리고 이를 바탕으로 웹 문서들에 대해서 퍼지개념을 적용한 자동분류 알고리즘을 이용하여 사용자의 관심도가 반영된 선별된 웹 문서를 자동분류 및 선별하여 보여줄 수 있는 방안을 제시한다.

  • PDF