Journal of the Institute of Electronics Engineers of Korea SC
/
v.42
no.5
s.305
/
pp.19-26
/
2005
In this paper, a new method for obtaining three-dimensional shape of an object by measuring relative blur between images using wavelet analysis has been described. Most of the previous methods use inverse filtering to determine the measure of defocus. These methods suffer from some fundamental problems like inaccuracies in finding the frequency domain representation, windowing effects, and border effects. Besides these deficiencies, a filter, such as Laplacian of Gaussian, that produces an aggregate estimate of defocus for an unknown texture, can not lead to accurate depth estimates because of the non-stationary nature of images. We propose a new depth from defocus (DFD) method using wavelet analysis that is capable of performing both the local analysis and the windowing technique with variable-sized regions for non-stationary images with complex textural properties. We show that normalized image ratio of wavelet power by Parseval's theorem is closely related to blur parameter and depth. Experimental results have been presented demonstrating that our DFD method is faster in speed and gives more precise shape estimates than previous DFD techniques for both synthetic and real scenes.
Journal of the Korean Institute of Intelligent Systems
/
v.18
no.5
/
pp.718-723
/
2008
Bearing is one of the important mechanical elements used in various industrial equipments. Most of failures occurred during the equipment operation result from bearing defects and breakages. Therefore, monitoring of bearings is essential in preventing equipment breakdowns and reducing unexpected loss. The purpose of this paper is to present an online monitoring method to predict bearing states using vibration signals. Bearing vibrations, which are collected as a form of profile signal, are first analyzed by a discrete wavelet transform. Next, some statistical features are obtained from the resultant wavelet coefficients. In order to select significant ones among them, analysis of variance (ANOVA) is employed in this paper. Statistical features screened in this way are used as input variables to support vector machine (SVM). An hierarchical SVM tree is proposed for dealing with multi-class problems. The result of numerical experiments shows that the proposed SVM tree has a competent performance for classifying bearing fault states.
This paper proposes the method that detects abnormal trajectory of fish with tracking data. And it is obtained by automatic tracking system based on conventional computer vision. Also, we analyze the trajectory using subband frequency features through DWT(Discrete Wavelet Transform). Through experimental results, we confirm that our results have some statistical means. The proposed method demonstrates that DWT is useful method for detecting presence of toxicoid features in environment as for an alternative of bio-monitoring tool.
Proceedings of the Korean Society for Emotion and Sensibility Conference
/
2002.05a
/
pp.286-290
/
2002
두뇌-컴퓨터 인터페이스(brain-computer interface)를 적용하기 위한 연구로서 주어진 문제에서 긍/부정을 선택할 때 나타나는 뇌파를 분별하기 위해서 시간-주파수 분석을 하였다. 단시간 퓨리에 변환(short time fourier transform : STFT)을 하여 긍/부정 선택시 뇌파의 시간-주파수 변화량을 보고, 시간-주파수 분해능이 좋은 웨이블릿 변환(wavelet transform)을 적용하여 서로 비교하였다. 두 가지 분석에서 공통된 결과는 주로 RT전 0.5초 주위에서 유의미한 결과를 나타내었고, 웨이블릿 분석에서 더 좁은 구간에 나타나며, 통계적으로 더 유의미한 결과를 나타내었다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2012.11a
/
pp.103-104
/
2012
본 논문에서는 디지털 영화 제작 환경에서 흔히 발생하는 얼라이싱 현상을 최소화하기 위한 방법을 제안한다. 제안된 알고리즘은 영상의 얼라이싱 현상을 웨이블릿-푸리에 분석 (Wavelet-Fourier Analysis)으로 분석하고, 노치 리젝트 필터(Notch Reject Filter)를 이용하여 얼라이싱 현상을 최소화 시켜 영상 화질을 개선한다. 실험결과에서 보듯이 제안된 알고리듬은 디지털 시네마 영상에서 얼라어싱을 효과적으로 제거하여 개선된 화질의 영상으로 관객의 몰입감을 높여줄 수 있다.
본 논문은 청각 자극이 제시되었을 때 변화되는 뇌파로부터 의미 있는 특징을 찾아내서 정량화 할 수 있는 변수 추출 및 분류 기법을 제시한다. 건강한 피실험자로부터 방향성 있는 청각 자극을 인가했을 때의 뇌파를 검출, 분류하였다. 뇌파의 변수 추출 방법으로는 짧은 시간영역에서의 신호의 갑작스런 변화량도 정량적으로 분석할 수 있는 Mallat's A1gorithm을 이용한 웨이블릿 변환(wavelet transform)을 적용하였고, 분류 방법으로는 그 결과로 나온 웨이블릿 계수를 변수로 하여 Neural Network을 학습하여 사용하였다. 향후 피실험자의 훈련을 통해서 청각 자극이 없이 순수한 생각만으로 방향을 검출할 수 있는 뇌파분석기를 만든다면 생각만으로도 물체의 방향을 제어할 수 있을 것이다.
높은 SOC(state-of-charge) 추정알고리즘의 성능을 위해서는 측정된 배터리 단자전압의 정확도가 요구된다. 그렇지만, 예기치 않은 에러로 인해 단자전압에 노이즈 성분이 추가될 경우 SOC 추정성능의 저하를 피할 수 없다. 그러므로, 본 논문에서는 이산 웨이블릿 변환(DWT;discrete wavelet transform)의 다해상도 분석(MRA;multi resolution analysis)의 디노이징(denoising)기법을 적용한 이차전지의 SOC 추정방법을 소개한다. MRA의 시간-주파수 분석을 통해 분해(decomposition)된 저주파 성분(approximation;$A_n$)과 고주파 성분(detail;$D_n$)중 노이즈에 관계된 $D_n$의 고주파 상세 계수(detail coefficient) $d_{j,k}$를 새로이 조정하고 이를 합성(synthesis)하여 디노이징을 마무리 한다. 확장 칼만필터(EKF;extended Kalman filter)의 비교 분석을 통해 제안된 방법의 타당성을 검증한다.
이산 웨이블릿 변환(DWT;discrete wavelet transform)의 다해상도 분석(MRA;multi resolution analysis)을 효율적으로 수행하기 위해서는 적절한 모함수(mother wavelet)의 선택이 필수적이다. 본 논문에서는, 노이즈가 포함된 충방전 전압의 디노이징(denoising)을 구현할 때, 모함수에 따른 디노이징 성능을 비교 및 분석한다. 고정된 MRA 레벨에서 6개의 모함수를 비교하되, 각 모함수에서 최대 SNR(signal-to-noise ratio)을 가지는 타입을 대푯값으로 정하여 모함수에 따른 디노이징 성능을 비교한다. 이를 위해, 하드 임계화(hard-thresholding) 및 소프트 임계화(soft-thresholding) 기법을 적용한다.
다중 표적을 감시하는 무선 센서 네트워크에서 다중 표적이 서로 교차하게 될 때 각각의 표적을 분리하는 문제는 표적의 추적, 탐지, 식별 등의 분야에서 매우 중요하다. 기존의 무선 센서 네트워크에서는 에너지 기반의 기법을 사용하기 때문에 다중 표적의 위치를 추정할 수 없거나, 기지국에서의 원 신호 분석 방법을 통해 표적의 종류를 식별하여 각각의 표적을 분리한다. 후자의 방법은 무선 센서 노드의 통신량과 연산량을 증가시켜 센서 노드의 생존 시간이 짧아지는 단점이 있고, 표적 분리까지 걸리는 시간으로 인해 실시간 처리가 어렵다. 본 논문에서는 무선 센서 노드에서 웨이블릿 변환을 이용한 특징을 추출하고 이를 이용해 다중 표적이 센서 영역 내에서 교차하게 될 때 표적을 분리하는 방법을 제안한다. 제안된 방법은 웨이블릿 상수의 주파수 정보를 이용하여 적은 연산으로 표적을 분리한다.
In this paper, we propose a method for the improvement of EZW encoding algorithm. The EZW algorithm encodes wavelet coefficients using 4 symbols such as POS(POsitive), NEG(NEGative), IZ(Isolated Zero), and ZTR(ZeroTreeRoot) which are determined by the significance of wavelet coefficients. In this paper, we applied threshold to wavelet coefficients to improve the EZW algorithm. The coefficients below the threshold are adjusted to zero to generate more ZTR symbols in the encoding process. The overall EZW image compression system is constructed using run-length coding and arithmetic coding. The system shows remarkable results for various images. We finally present experimentation results.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.