• Title/Summary/Keyword: 웨이블릿분석

Search Result 249, Processing Time 0.034 seconds

Research on Classification of Human Emotions Using EEG Signal (뇌파신호를 이용한 감정분류 연구)

  • Zubair, Muhammad;Kim, Jinsul;Yoon, Changwoo
    • Journal of Digital Contents Society
    • /
    • v.19 no.4
    • /
    • pp.821-827
    • /
    • 2018
  • Affective computing has gained increasing interest in the recent years with the development of potential applications in Human computer interaction (HCI) and healthcare. Although momentous research has been done on human emotion recognition, however, in comparison to speech and facial expression less attention has been paid to physiological signals. In this paper, Electroencephalogram (EEG) signals from different brain regions were investigated using modified wavelet energy features. For minimization of redundancy and maximization of relevancy among features, mRMR algorithm was deployed significantly. EEG recordings of a publically available "DEAP" database have been used to classify four classes of emotions with Multi class Support Vector Machine. The proposed approach shows significant performance compared to existing algorithms.

Depth From Defocus using Wavelet Transform (웨이블릿 변환을 이용한 Depth From Defocus)

  • Choi, Chang-Min;Choi, Tae-Sun
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.42 no.5 s.305
    • /
    • pp.19-26
    • /
    • 2005
  • In this paper, a new method for obtaining three-dimensional shape of an object by measuring relative blur between images using wavelet analysis has been described. Most of the previous methods use inverse filtering to determine the measure of defocus. These methods suffer from some fundamental problems like inaccuracies in finding the frequency domain representation, windowing effects, and border effects. Besides these deficiencies, a filter, such as Laplacian of Gaussian, that produces an aggregate estimate of defocus for an unknown texture, can not lead to accurate depth estimates because of the non-stationary nature of images. We propose a new depth from defocus (DFD) method using wavelet analysis that is capable of performing both the local analysis and the windowing technique with variable-sized regions for non-stationary images with complex textural properties. We show that normalized image ratio of wavelet power by Parseval's theorem is closely related to blur parameter and depth. Experimental results have been presented demonstrating that our DFD method is faster in speed and gives more precise shape estimates than previous DFD techniques for both synthetic and real scenes.

A Wavelet-based Profile Classification using Support Vector Machine (SVM을 이용한 웨이블릿 기반 프로파일 분류에 관한 연구)

  • Kim, Seong-Jun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.5
    • /
    • pp.718-723
    • /
    • 2008
  • Bearing is one of the important mechanical elements used in various industrial equipments. Most of failures occurred during the equipment operation result from bearing defects and breakages. Therefore, monitoring of bearings is essential in preventing equipment breakdowns and reducing unexpected loss. The purpose of this paper is to present an online monitoring method to predict bearing states using vibration signals. Bearing vibrations, which are collected as a form of profile signal, are first analyzed by a discrete wavelet transform. Next, some statistical features are obtained from the resultant wavelet coefficients. In order to select significant ones among them, analysis of variance (ANOVA) is employed in this paper. Statistical features screened in this way are used as input variables to support vector machine (SVM). An hierarchical SVM tree is proposed for dealing with multi-class problems. The result of numerical experiments shows that the proposed SVM tree has a competent performance for classifying bearing fault states.

Personal Biometric Identification based on ECG Features (ECG 특징추출 기반 개인 바이오 인식)

  • Yoon, Seok-Joo;Kim, Gwang-Jun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.4
    • /
    • pp.521-526
    • /
    • 2015
  • Research on how to use the biological characteristics of human to confirm the identity of the individual is being actively conducted. Electrocardiogram(: ECG) based biometric system is difficult to counterfeit and does not cause skin irritation on the subject. It can be easily combined with conventional biometrics such as fingerprint and face recognition to give multimodal biometric systems. In this thesis, biometric identification method analysing ECG waveform characteristics from Discrete Wavelet Transform(DWT) coefficients is suggested. Feature selection is performed on the 9 coefficients of DWT using the correlation analysis. The verification is achieved by using the error back propagation neural networks. Using the proposed approach on 24 subjects of MIT-BIH QT Database, 98.88% verification rate has been obtained.

Analyzing Characteristics of Fringe Pattern by Fresnelet Transform (프린지패턴의 프레넬릿 변환 특성에 대한 연구)

  • Seo, Young-Ho;Lee, Yoon-Hyuck;Kim, Dong-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.422-423
    • /
    • 2018
  • In this paper, we implement Frenelet transform for decomposition of the fringe pattern and analyze its characteristics. The implemented wavelet-like basis functions are well suited for reconstruction and processing of optically generated Fresnel holograms. After analyzing the characteristics of the B-spline function, we will discuss the wavelet-like multi-resolution analysis method. Through this process, we implemented a transform tool that can decompose fringe patterns effectively. We have implemented a B-spline function with various decomposition properties and showed the results of decomposing the fringe pattern.

  • PDF

Wavelet Transform based Robust Face Detection (명암변화에 강한 웨이블릿 변환 기반의 얼굴검출)

  • Cho, Chi-Young;Kim, Soo-Hwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.489-492
    • /
    • 2005
  • In this paper, we present a system for robust face detection based on wavelet transform using the standard models of image distortion. In the previous works, it was known to be difficult to treat a distorting of image information such as noises and light of the images obtained by a still camera and a movie camera. we analyze the high frequence information by using wavelet transform. This information is used for testing the image distortion and constructing the standard models of image distortion. The experimental results show that our extracting method based on standard models of image distortion is very effective.

  • PDF

Performance Comparisons of Wavelet Based T2-Test and Neural Network in Monitoring Process Profiles (공정프로파일 모니터링에서 웨이블릿기 반 T2-검정과 신경회로망의 성능비교)

  • Kim, Seong-Jun;Choi, Deok-Ki
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.6
    • /
    • pp.737-745
    • /
    • 2008
  • Recent developments of process and measurement technology bring much interest to the online monitoring of process operations such as milling, grinding, broaching, etc. The objective of online monitoring systems is to detect process changes as early as possible. This is helpful in protecting facilities against unexpected failures and then preventing unnecessary loss. This paper investigates, when the process monitoring data are obtained as a profile, the monitoring performances of a statistical $T^2$-statistic and a feedforward neural network by using a wavelet transform. Numerical experiments using cutting force data presented by Axinte show that the proposed wavelet based $T^2$-test has an acceptable power in detecting profile changes. However, its operating characteristic is very sensitive to autocorrelation. On the contrary, compared with $T^2$-test, the neural network has more stable performance in the presence of autocorrelation. This indicates that an adaptive feature to analyze noises should be incorporated into the wavelet based $T^2$-test.

Fish's Activity Analysis through Frequency Analysis of Angle Information (움직임 각도의 주파수 분석을 통한 활동성 분석)

  • Kim, Cheol-Ki
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.5
    • /
    • pp.10-15
    • /
    • 2007
  • This paper proposes the method that detects abnormal trajectory of fish with tracking data. And it is obtained by automatic tracking system based on conventional computer vision. Also, we analyze the trajectory using subband frequency features through DWT(Discrete Wavelet Transform). Through experimental results, we confirm that our results have some statistical means. The proposed method demonstrates that DWT is useful method for detecting presence of toxicoid features in environment as for an alternative of bio-monitoring tool.

A Time-Frequency Analysis of the EEG for Yes/No response III (긍/부정 문답 관련 뇌파에 대한 시간-주파수 분석 III)

  • 남승훈;류창수;신승철;임태규;송윤선
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2002.05a
    • /
    • pp.286-290
    • /
    • 2002
  • 두뇌-컴퓨터 인터페이스(brain-computer interface)를 적용하기 위한 연구로서 주어진 문제에서 긍/부정을 선택할 때 나타나는 뇌파를 분별하기 위해서 시간-주파수 분석을 하였다. 단시간 퓨리에 변환(short time fourier transform : STFT)을 하여 긍/부정 선택시 뇌파의 시간-주파수 변화량을 보고, 시간-주파수 분해능이 좋은 웨이블릿 변환(wavelet transform)을 적용하여 서로 비교하였다. 두 가지 분석에서 공통된 결과는 주로 RT전 0.5초 주위에서 유의미한 결과를 나타내었고, 웨이블릿 분석에서 더 좁은 구간에 나타나며, 통계적으로 더 유의미한 결과를 나타내었다.

  • PDF

Study on the Characteristics of Wavelet Decomposed Details of Low-Velocity Impact Induced AE Signals in Composite Laminaes (저속충격에 의해 발생한 복합적층판 음향방출신호의 웨이블릿 분해 특성에 관한 연구)

  • Bang, Hyung-Joon;Kim, Chun-Gon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.4
    • /
    • pp.308-315
    • /
    • 2009
  • Because the attenuation of AE signal in composite materials is relatively higher than that of metallic materials, it is required to develop a damage assessment technique less affected by the attenuation property of composite materials in order to use AE sensing as a damage detection method. In the signal processing procedure, it is profitable to use the leading wave that arrives first because the leading wave is less influenced by the boundary conditions. Using wavelet transform, we investigated the frequency characteristics of impact induced AE signals focused on the leading wave in advance and chose the key factors to discriminate the damaged condition quantitatively. In this research, we established a damage assessment technique using the sharing percentage of the wavelet detail components of AE signal, and conducted a low-velocity impact test on composite laminates to confirm the feasibility of the proposed signal processing method.