• Title/Summary/Keyword: 웨이브휜

Search Result 7, Processing Time 0.018 seconds

Experimental study of air side pressure drop and heat transfer characteristics of wave and wave-slit fin-tube heat exchangers (웨이브 및 웨이브-슬릿 열전달촉진 휜-관 열교환기의 공기측 압력강하 및 열전달 특성에 관한 실험)

  • Yoon, Baek;Gil, Yong-Hyun;Park, Hyun-Yeon;Yoo, Guk-Chul;Kim, Young-Saeng
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.5
    • /
    • pp.589-599
    • /
    • 1998
  • Air side heat transfer and pressure drop for fin-tube heat exchanger with wave and wave-slit fins were measured for various fin spacings and number of tube rows. Outer diameter of the tube including fin collar is 10.07mm, and experiments were done with dry surface condition. Longitudinal and transverse tube spacings of the heat exchangers are 21.65mm and 25mm respectively, and wave depth of the wave fin is 2mm. Experiments were conducted for 1, 2 and 3 rows and 3 different fin spacings, 1.3, 1.5 and 1.7mm. An attempt was made to demonstrate advantage of the enhanced fins over the plane fin by introducing the concept of fan power, Effect of the number of tube rows on heat transfer was discussed in connection with general mechanisms of heat transfer enhancement for fin-tube heat exchanger. Also the effect of hydrophilic coating was investigated. Lastly, correlations for Colburn j-factor and friction factor were developed.

  • PDF

Experimental Study of Air Side Pressure Drop and Heat Transfer Characteristics of Enhanced Fin-Tube Heat Exchangers (열전달 촉진 핀-관 열교환기의 공기측 압력강화 및 열전달 특성에 관한 실험)

  • Youn, Baek;Kil, Yong Hyun;Park, Hyun Yeon;Kim, Young Saeng
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.11
    • /
    • pp.1555-1563
    • /
    • 1998
  • Heat transfer and pressure drop for ${\phi}10.07$ dry surface fin-tube heat exchanger with wave and wave-slit fins were measured for different fin spacings and number of tube rows. Longitudinal and transverse tube spacings of the heat exchangers are 21.65mm and 25mm respectively, and wave depth of wave fin is 1.5mm. The experiments were performed for 4 different fin spacings, 1.3, 1.5, 1.7 and 2.0mm, and the number of tube rows were 1,2 and 3 rows. The present results were compared with the previous results for the wave depth of 2mm. Also hydrophilic coated and bare fins were tested. Correlations for Colburn j-factor and friction factor were developed.

Experimental study of performance characteristics of various fin types for fin-tube heat exchanger (휜-관 열교환기에 있어서 각종 휜 형상의 성능 특성에 관한 실험적 연구)

  • Yoon, Baek;Kim, Young-Saeng;Park, Hwan-Young;Park, Hyun-Yeon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.4
    • /
    • pp.484-491
    • /
    • 1999
  • Air side heat transfer and pressure drop for ø9.52 fin-tube heat exchanger with various types of slit and louver fins were measured, and compared with wave-slit fin. Longitudinal and transverse tube spacings of the heat exchangers are 21.65mm and 25mm respectively. Actual heat exchanger was tested using water, and the tests were performed for 2 row heat exchangers with 3 different fin spacings, 1.3, 1.5 and 1.7mm. The overall performance of the enhanced fins was evaluated by comparing heat transfer coefficient with respect to fan power.

  • PDF

Heat Transfer Coefficients of Individual Rows for Fin-and-Tube Heat Exchangers (휜-관 열교환기의 열별 열전달 계수 측정)

  • Shin, T.R.;Lee, E.R.;Kim, N.H.
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1034-1039
    • /
    • 2004
  • The row-by-row heat transfer characteristics of fin-and-tube heat exchangers having wavy fins were experimentally investigated. Three samples having different rows (one, two and three) were tested. Results show that the heat transfer coefficient is strongly dependent on the tube row. The heat transfer coefficient of the first row is larger than those of second or third rows. However, the difference decreases as the Reynolds number increases. The heat transfer coefficients of the second and the third row are approximately the same, probably due to increased mixing of bulk flow by wavy channels. Although samples have different tube row, the heat transfer coefficients of same row are approximately the same.

  • PDF

Development of 2-dimensional model for thermal comfort in train (철도 차량 온열 쾌적성에 관한 2차원 모델 개발)

  • Yeon, Bong-Joon;Kim, Moon-Uhn;Kim, Man-Hoe
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.9-16
    • /
    • 2007
  • This study aims to suggest an evaluation method of thermal environment using CFD, not an experiment, which is usual in the field. Model train is the newly introduced Mugunghwa train. Since its compartment occupies a large space and chairs and other accessories make it a complicated structure, 3-D calculation might take too much time and effort to make evaluation itself possible. Therefore, we suggest a 2-D model to replace the original 3-D model for averaged temperature and temperature distribution in the cabin.

  • PDF

An Experimental Investigation on the Airside Performance of Fin-and-Tube Heat Exchangers Having Sinusoidal Wave Fins (사인 웨이브 휜-관 열교환기의 공기측 성능에 관한 실험연구)

  • Kim, Nae-Hyun;Cho, Jin-Pyo;Yoon, Baek
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.4
    • /
    • pp.355-367
    • /
    • 2004
  • The heat transfer and friction characteristics of the heat exchangers having sinusoidal wave fins were experimentally investigated. Twenty-nine samples having different waffle heights (1.5 mm and 2.0 m), fin pitches (1.3mm to 1.7mm) and tube rows (one to three) were tested. Focus was given to the effect of the waffle configuration (herringbone or sinusoidal) on the heat transfer and friction characteristics. Results show that the sinusoidal wave geometry provides higher heat transfer coefficients and friction factors than the herringbone wave geometry, and the difference increases as the number of row increases. The i/f ratios of the herringbone wave geometry, however, are larger than those of the sinusoidal wave geometry. Compared to the herringbone wave geometry, the sinusoidal wave geometry yielded a weak row effect, which suggests a superior heat transfer performance at the fully developed flow region. Possible explanation is provided considering the flow characteristics in wavy channels. Within the present geometric range, the effect of the waffle height on the heat transfer coefficient was not prominent. The effect of the fin pitch was also negligible. Existing correlations highly overpredicted both the heat transfer coefficients and friction factors. A new correlation was developed using the present data.