• Title/Summary/Keyword: 웨이브렛 스펙트럼

Search Result 15, Processing Time 0.021 seconds

Analysis of Ringing by Continuous Wavelet (연속 웨이브렛에 의한 Ringing현상 해석)

  • 권순홍;이형석;하문근
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.10a
    • /
    • pp.118-122
    • /
    • 2000
  • In this study, Ringing is investigated by continuous wavelet transform. Ringing is considered to be one of the typical transient phenomena in the field of ocean engineering. The wavelet analysis is adopted to analyze ringing from the point that wavelet analysis is capable of frequency analysis as well as time domain analysis. The use mother wavelet is the Morlet wavelet. The relation between the frequency of the time series and that of wavelet can be clearly defined with Mor1et wavelet. Experimental data obtained by other researchers was used. The wave height time series and acceleration times series of the surface piercing cylinder were analyzed. The results show that the proposed scheme can detect typical frequency region by the time domain analysis which could hardly be detected if one relied on the frequency analysis.

  • PDF

Detection and Analysis of Chatter in Endmilling Operation (엔드밀 가공시 채터 검출 및 분석법)

  • Oh Sang-Lok;Chin Do-Hun;Yoon Moon-Chul
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.6
    • /
    • pp.10-16
    • /
    • 2004
  • The detection and analysis of chatter behaviour in endmilling is very complex and difficult so it is necessary to detect and diagnose this chatter phenomenon clearly. This paper presents a new method for detecting the abnormal chatter in endmilling operation, based on the wavelet transform. Using AR spectrum the data that has chatter phenomenon was verified and the fundamental property of chatter and its characteristics in endmilling by using the wavelet transform is reviewed. This result obtained by wavelet transform proves the possibility and reliability of detecting the chatter in endmilling operation.

Direction of Arrival Estimation in Colored Noise Using Wavelet Decomposition (웨이브렛 분해를 이용한 유색잡음 환경하의 도래각 추정)

  • Kim, Myoung-Jin
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.37 no.6
    • /
    • pp.48-59
    • /
    • 2000
  • Eigendecomposition based direction-of-arrival(DOA) estimation algorithm such as MUSIC(multiple signal classification) is known to perform well and provide high resolution in white noise environment. However, its performance degrades severely when the noise process is not white. In this paper we consider the DOA estimation problem in a colored noise environment as a problem of extracting periodic signals from noise, and we take the problem to the wavelet domain. Covariance matrix of multiscale components which are obtained by taking wavelet decomposition on the noise has a special structure which can be approximated with a banded sparse matrix. Compared with noise the correlation between multiscale components of narrowband signal decays slowly, hence the covariance matrix does not have a banded structure. Based on this fact we propose a DOA estimation algorithm that transforms the covariance matrix into wavelet domain and removes noise components located in specific bands. Simulations have been carried out to analyze the proposed algorithm in colored noise processes with various correlation properties.

  • PDF

Recognition of Stable State of EEG using Wavelet Transform and Power Spectrum Analysis (웨이브렛 변환과 파워 스펙트럼 분석을 이용한 EEG의 안정 상태 인식에 관한 고찰)

  • Kim, Young-Seo;Kil, Se-Kee;Lim, Seon-Ah;Min, Hong-Ki;Her, Woong;Hong, Seung-Hong
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.879-880
    • /
    • 2006
  • The subject of this paper is to recognize the stable state of EEG using wavelet transform and power spectrum analysis. An alpha wave, showed in stable state, is dominant wave for a human EEG and a beta wave displayed excited state. We decomposed EEG signal into an alpha wave and a beta wave in the process of wavelet transform. And we calculated each power spectrum of EEG signal, an alpha wave and a beta wave using Fast Fourier Transform. We recognized the stable state by making a comparison between power spectrum ratios respectively.

  • PDF

A DCT Adaptive Subband Filter Algorithm Using Wavelet Transform (웨이브렛 변환을 이용한 DCT 적응 서브 밴드 필터 알고리즘)

  • Kim, Seon-Woong;Kim, Sung-Hwan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.46-53
    • /
    • 1996
  • Adaptive LMS algorithm has been used in many application areas due to its low complexity. In this paper input signal is transformed into the subbands with arbitrary bandwidth. In each subbands the dynamic range can be reduced, so that the independent filtering in each subbands has faster convergence rate than the full band system. The DCT transform domain LMS adaptive filtering has the whitening effect of input signal at each bands. This leads the convergence rate to very high speed owing to the decrease of eigen value spread Finally, the filtered signals in each subbands are synthesized for the output signal to have full frequency components. In this procedure wavelet filter bank guarantees the perfect reconstruction of signal without any interspectra interference. In simulation for the case of speech signal added additive white gaussian noise, the suggested algorithm shows better performance than that of conventional NLMS algorithm at high SNR.

  • PDF