• Title/Summary/Keyword: 월 물 수지 모형

Search Result 56, Processing Time 0.041 seconds

A Study on the Generalization of Multiple Linear Regression Model for Monthly-runoff Estimation (선형회귀모형(線型回歸模型)에 의한 하천(河川) 월(月) 유출량(流出量) 추정(推定)의 일반화(一般化)에 관한 연구(硏究))

  • Kim, Tai Cheol
    • Korean Journal of Agricultural Science
    • /
    • v.7 no.2
    • /
    • pp.131-144
    • /
    • 1980
  • The Linear Regression Model to extend the monthly runoff data in the short-recorded river was proposed by the author in 1979. Here in this study generalization precedure is made to apply that model to any given river basin and to any given station. Lengthier monthly runoff data generated by this generalized model would be useful for water resources assessment and waterworks planning. The results are as follows. 1. This Linear Regression Model which is a transformed water-balance equation attempts to represent the physical properties of the parameters and the time and space varient system in catchment response lumpedly, qualitatively and deductively through the regression coefficients as component grey box, whereas deterministic model deals the foregoings distributedly, quantitatively and inductively through all the integrated processes in the catchment response. This Linear Regression Model would be termed "Statistically deterministic model". 2. Linear regression equations are obtained at four hydrostation in Geum-river basin. Significance test of equations is carried out according to the statistical criterion and shows "Highly" It is recognized th at the regression coefficients of each parameter vary regularly with catchment area increase. Those are: The larger the catchment area, the bigger the loss of precipitation due to interception and detention storage in crease. The larger the catchment area, the bigger the release of baseflow due to catchment slope decrease and storage capacity increase. The larger the catchment area, the bigger the loss of evapotranspiration due to more naked coverage and soil properties. These facts coincide well with hydrological commonsenses. 3. Generalized diagram of regression coefficients is made to follow those commonsenses. By this diagram, Linear Regression Model would be set up for a given river basin and for a given station (Fig.10).

  • PDF

Water shortage assessment by applying future climate change for boryeong dam using SWAT (SWAT을 이용한 기후변화에 따른 보령댐의 물부족 평가)

  • Kim, Won Jin;Jung, Chung Gil;Kim, Jin Uk;Kim, Seong Joon
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.12
    • /
    • pp.1195-1205
    • /
    • 2018
  • In the study, the water shortage of Boryeong Dam watershed ($163.6km^2$) was evaluated under future climate change scenario. The Soil and Water Assessment Tool (SWAT) was used considering future dam release derived from multiple linear regression (MLR) analysis. The SWAT was calibrated and verified by using daily observed dam inflow and storage for 12 years (2005 to 2016) with average Nash-Sutcliffe efficiency of 0.59 and 0.91 respectively. The monthly dam release by 12 years MLR showed coefficient of determination ($R^2$) of above 0.57. Among the 27 RCP 4.5 scenarios and 26 RCP 8.5 scenarios of GCM (General Circulation Model), the RCP 8.5 BCC-CSM1-1-M scenario was selected as future extreme drought scenario by analyzing SPI severity, duration, and the longest dry period. The scenario showed -23.6% change of yearly dam storage, and big changes of -34.0% and -24.1% for spring and winter dam storage during 2037~2047 period comparing with 2007~2016 period. Based on Runs theory of analyzing severity and magnitude, the future frequency of 5 to 10 years increased from 3 in 2007~2016 to 5 in 2037~2046 period. When considering the future shortened water shortage return period and the big decreases of winter and spring dam storage, a new dam operation rule from autumn is necessary for future possible water shortage condition.

Altitudinal Pattern of Evapotranspiration and Water Need for Upland Crops in Jeju Island (제주도 지역의 고도에 따른 증발산량 및 용수량 특성 평가)

  • Kim, Chul Gyum;Kim, Nam Won
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.11
    • /
    • pp.915-923
    • /
    • 2015
  • A method of estimating irrigation water need based on water balance and net water consumption concept is proposed, and applied to four watersheds in order to assess the regional and altitudinal characteristics of evapotranspiration and water need for upland crops in Jeju Island. Potential and actual evapotranspiration, and net water need were calculated during the period 1992 to 2013 using SWAT-K watershed model. The annual potential evapotranspiration decreased linearly with increasing elevation, while actual evapotranspiration showed increase with elevation to 400 m around and gradual decrease at higher elevation due to vegetation species, water availability, and cold limitation. Altitudinal pattern of net water need showed linear decrease with increasing elevation for three watersheds (Han-cheon, Cheonmi-cheon, and Oedo-cheon), and annual values of net water need for upland areas (below 200 m in elevation) were 559~680mm/yr. The comparison between actual pumping rate from wells and net water need for irrigation area showed that the amount of pumping water significantly increased during summer season (June to August), while net water need for crop cultivation relatively decreased during this period. To ensure these results, more water use data from pumping wells and additional watersheds should be investigated in the next study.

The Evaluation of Application to MODIS LAI (Leaf Area Index) Product (MODIS LAI (엽면적지수) Product의 활용성 평가)

  • Ha, Rim;Shin, Hyung-Jin;Park, Geun-Ae;Hong, Woo-Yong;Kim, Seong-Jun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.11 no.2
    • /
    • pp.61-72
    • /
    • 2008
  • Leaf area index (LAI) is a key biophysical variable influencing land surface processes such as photosynthesis, transpiration and energy balance, and is a required input to estimate evapotranspiration in various ecological and hydrological models. The development of more correct and useful LAIs estimation techniques is required by these importance, but LAIs had been assumed in most LAI research through simple relations with the normalized difference vegetation index (NDVI) because the field measurement is difficult on wide area. This paper is to evaluate the MODIS LAI Product's practical use by comparing with LAIs that is derived from NOAA AVHRR NDVIs and the 2 years (2003-2004) measured LAIs of Korea Forest Research Institute in Gyeongancheon watershed (561.12 $Km^2$). As a result, the MODIS LAIs of deciduous forests showed higher values about 14 % and 15~30 % than the measured LAIs and NOAA LAIs. In the year of 2003, the MODIS LAIs in coniferous forests were 5 % higher than the measured LAIs, and showed about 7 % differences comparing with the NOAA LAIs except April. These differences come from the insufficient field data measured in partial points of the target area, and the extracted reference data from MODIS LAIs include the limits of spatial resolution and the error of incorrect land cover classification. Thus, using the MODIS data by the proper correction with the measured data can be useful as an input data for ecological and hydrological models which offers the vegetation information and simulates the water balance of a given watershed.

  • PDF

Characteristics of Water Budget on Throughfall and Stemflow in Pinus densiflora and Quercus acutissima (소나무와 상수리나무림의 임내우 물수지 특성)

  • 이헌호;박재철
    • Korean Journal of Environment and Ecology
    • /
    • v.12 no.3
    • /
    • pp.259-270
    • /
    • 1998
  • This study, as an essential research to develope a mountainous runoff model, was conducted to clarify the hydrologic character and water budget equation of Pinus densiflora and Quercus acutissima. Net rainfall quantity division for two species was investigated at Youngsung experiment forest and Yeungnam University for 30 months(Sep. 1995-Jun. 1998). The results were summarized as follows; 1. The percentages of throughfall and stemflow to gross precipitation are 73.8% and 0.8% in the Pinus densiflora, and 76.9% and 3.8% in the Quercus acutissima, respectively 2. In the Pinus densiflora, regression fomula of stemflow, throughfall, and net rainfall to gross precipitation are S$_{f}$ = 0.01GP-2.05 ($r^2$=0.54) T$_{f}$ = 0.79Gp - 26.04 ($r^2$=0.92), N$_{r}$ = 0.81Gp - 28.09 ($r^2$=0.92). Stemflow and throughfall increased in direct proportion to gross precipitation. 3. In the Quercus acutissima, regression fomula of stemflow, throughfall, and net rainfall to gross precipitation are S$_{f}$ = 0.03Gp + 12.25 ($r^2$=0.74), T$_{f}$ = 0.78Gp + 19.75 ($r^2$=0.96), N$_{r}$ = 0.81Gp + 3199 ($r^2$=0.96), respectively. Comparing with two species, gross precipitation has a much larger effect on the stemflow and throughfall of Quercus acutissima than those of Pinus densiflora. 4. In the analysis of intercorrelation between stemflow and throughfall of each species and crown area(CA), diameter at breast height(DBH), and gross precipitation(Gp), correlation coefficient was higher by following order at each species; Gp>CA>DBH on stemflow of Pinus densinora, Gp>DBH>CA on stemflow of Quercus acutissima, and Gp>CA>DBH on throughfall of Pinus densiflora and Quercus acutissima.ssima.

  • PDF

Study of East Asia Climate Change for the Last Glacial Maximum Using Numerical Model (수치모델을 이용한 Last Glacial Maximum의 동아시아 기후변화 연구)

  • Kim, Seong-Joong;Park, Yoo-Min;Lee, Bang-Yong;Choi, Tae-Jin;Yoon, Young-Jun;Suk, Bong-Chool
    • The Korean Journal of Quaternary Research
    • /
    • v.20 no.1 s.26
    • /
    • pp.51-66
    • /
    • 2006
  • The climate of the last glacial maximum (LGM) in northeast Asia is simulated with an atmospheric general circulation model of NCAR CCM3 at spectral truncation of T170, corresponding to a grid cell size of roughly 75 km. Modern climate is simulated by a prescribed sea surface temperature and sea ice provided from NCAR, and contemporary atmospheric CO2, topography, and orbital parameters, while LGM simulation was forced with the reconstructed CLIMAP sea surface temperatures, sea ice distribution, ice sheet topography, reduced $CO_2$, and orbital parameters. Under LGM conditions, surface temperature is markedly reduced in winter by more than $18^{\circ}C$ in the Korean west sea and continental margin of the Korean east sea, where the ocean exposed to land in the LGM, whereas in these areas surface temperature is warmer than present in summer by up to $2^{\circ}C$. This is due to the difference in heat capacity between ocean and land. Overall, in the LGM surface is cooled by $4{\sim}6^{\circ}C$ in northeast Asia land and by $7.1^{\circ}C$ in the entire area. An analysis of surface heat fluxes show that the surface cooling is due to the increase in outgoing longwave radiation associated with the reduced $CO_2$ concentration. The reduction in surface temperature leads to a weakening of the hydrological cycle. In winter, precipitation decreases largely in the southeastern part of Asia by about $1{\sim}4\;mm/day$, while in summer a larger reduction is found over China. Overall, annual-mean precipitation decreases by about 50% in the LGM. In northeast Asia, evaporation is also overall reduced in the LGM, but the reduction of precipitation is larger, eventually leading to a drier climate. The drier LGM climate simulated in this study is consistent with proxy evidence compiled in other areas. Overall, the high-resolution model captures the climate features reasonably well under global domain.

  • PDF