• Title/Summary/Keyword: 월별

Search Result 1,848, Processing Time 0.037 seconds

Neutralization of Acidity and Ionic Composition of Rainwater in Taean (태안지역 강우의 산성도 중화 및 화학성 평가)

  • Lee, Jong-Sik;Kim, Min-Kyeong;Park, Seong-Jin;Choi, Chul-Mann;Jung, Tae-Woo;Jung, Im-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.5
    • /
    • pp.336-340
    • /
    • 2009
  • The issue of acid precipitation and related environmental problems in East Asia has been emerging. To evaluate the acidity and chemical characteristics of rainwater in Korea, its chemical properties during cultivation season from April to October were investigated at Taean in 2007. Also, to estimate the contribution of ions on its acidity, ion composition characteristics and neutralization effects by cation ions were determined. The ion balance between cations and anions values showed high correlation. The mean values of pH and EC were 4.9 and $32.9{\mu}S\;cm^{-1}$, respectively. The EC of rainwater showed seasonal characteristic, which was $91.4{\mu}S\;cm^{-1}$ with relatively low rainfall compared with other monitoring periods. $Na^+$ was the main cation followed by $NH_4{^+}$ > $Ca^{2+}$ > $H^{+}$ > $Mg^{2+}$ > $K^+$. Among these ions, $Na^{+}$ and $NH_4{^+}$ covered over 70% of total cations. In the case of anion, the order was $SO_4{^{2-}}$ > $NO_3{^-}$ > $Cl^{-}$. The mean value of sulfate, which is main anion component in the samples was $152.1{\mu}eq\;L^{-1}$. Also, 90% of soluble sulfate in rainwater was $nss-SO_4{^{2-}}$(non-sea salt sulfate). With fractional acidity and theoretical acidity of rainwater samples, $NH_4{^+}$ and $Ca^{2+}$ contributed greatly in neutralizing the rain acidity.

Exploring Opinions on University Online Classes During the COVID-19 Pandemic Through Twitter Opinion Mining (트위터 오피니언 마이닝을 통한 코로나19 기간 대학 비대면 수업에 대한 의견 고찰)

  • Kim, Donghun;Jiang, Ting;Zhu, Yongjun
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.55 no.4
    • /
    • pp.5-22
    • /
    • 2021
  • This study aimed to understand how people perceive the transition from offline to online classes at universities during the COVID-19 pandemic. To achieve the goal, we collected tweets related to online classes on Twitter and performed sentiment and time series topic analysis. We have the following findings. First, through the sentiment analysis, we found that there were more negative than positive opinions overall, but negative opinions had gradually decreased over time. Through exploring the monthly distribution of sentiment scores of tweets, we found that sentiment scores during the semesters were more widespread than the ones during the vacations. Therefore, more diverse emotions and opinions were showed during the semesters. Second, through time series topic analysis, we identified five main topics of positive tweets that include class environment and equipment, positive emotions, places of taking online classes, language class, and tests and assignments. The four main topics of negative tweets include time (class & break time), tests and assignments, negative emotions, and class environment and equipment. In addition, we examined the trends of public opinions on online classes by investigating the changes in topic composition over time through checking the proportions of representative keywords in each topic. Different from the existing studies of understanding public opinions on online classes, this study attempted to understand the overall opinions from tweet data using sentiment and time series topic analysis. The results of the study can be used to improve the quality of online classes in universities and help universities and instructors to design and offer better online classes.

Studies on Adaptability by Rice Heading Ecology Type in the Central Northern Mid-Mountainous Cultivation Zone of Chungbuk Region (충북지역 중북부 중산간지 벼 출수생태형별 적응성 검토)

  • Lee, Chae Young;Choi, Ye Seul;Lee, Joung Kwan;Kim, Ik Jei;Kang, Shin Gu;Woo, Sun Hee;Kim, Young Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.66 no.3
    • /
    • pp.210-219
    • /
    • 2021
  • In recent years, air temperature has been increasing rapidly compared to the 1980s because of global warming. This increase in temperature reduces the yield and quality of rice; therefore, measures are needed to prevent such effects and ensure food security. The early maturing type (EMT) of rice is mainly cultivated in the central northern mid-mountainous area (CNMA). This study was conducted to shift the transplanting date of EMT and to examine the adaptability of the mid-maturing type (MMT) or mid-late maturing type (MLMT) in the Jecheon region of the CNMA to address global warming. The air temperature increased by 0.7-0.9℃ in the 2010s, compared to that in the 1980s, and was similar to other decades during the ripening period. Over the past 35 years, considering rice quality, the heading date of the Odae variety has arrived sooner by approximately 10 days, the ripened grain ratio has increased by more than 10%, and the thousand grain weight; however, the mean temperature at 40 days after heading has increased by more than 2℃. The late marginal heading date in the Jecheon region was determined as August 11 based on the accumulated temperature of 880℃ and August 15 based on 840℃ for 40 days after heading. According to different transplanting dates, milled rice yield per 10 a was the highest at 567 kg with June 10 in EMT, 595 kg with June 10 in MMT, and 572 kg with May 30 in MLMT. Considering the late marginal heading date, rice yield, and quality, the optimum transplanting date was June 15 in EMT, June 5 in MMT, and May 30 in MLMT in the Jecheon region of CNMA. Owing to global warming, MMT and MLMT are expected to be reliably cultivated in the CNMA.

A Study on the Characteristics of the Atmospheric Environment in Suwon Based on GIS Data and Measured Meteorological Data and Fine Particle Concentrations (GIS 자료와 지상측정 기상·미세먼지 자료에 기반한 수원시 지역의 도시대기환경 특성 연구)

  • Wang, Jang-Woon;Han, Sang-Cheol;Mun, Da-Som;Yang, Minjune;Choi, Seok-Hwan;Kang, Eunha;Kim, Jae-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_2
    • /
    • pp.1849-1858
    • /
    • 2021
  • We analyzed the monthly and annual trends of the meteorological factors(wind speeds and directions and air temperatures) measured at an automated synoptic observation system (ASOS) and fine particle (PM10 and PM2.5) concentrations measured at the air quality monitoring systems(AQMSs) in Suwon. In addition, we investigated how the fine particle concentrations were related to the meteorological factors as well as urban morphological parameters (fractions of building volume and road area). We calculated the total volume of buildings and the total area of the roads in the area of 2 km × 2 km centered at each AQMS using the geographic information system and environmental geographic information system. The analysis of the meteorological factors showed that the dominant wind directions at the ASOS were westerly and northwesterly and that the average wind speed was strong in Spring. The measured fine particle concentrations were low in Summer and early Autumn (July to September) and high in Spring and Winter. In 2020, the annual mean fine particle concentration was lowest at most AQMSs. The fine particle concentrations were negatively and weakly correlated with the measured wind speeds and air temperatures (the correlation between PM2.5 concentrations and air temperatures was relatively strong). In Suwon city, at least for 6 AQMSs except for the RAQMS 131116 and AQMS 131118, the PM10 concentrations were affected mainly by the transport from outside rather than primary emission from mobile sources or wind speed decrease caused by buildings and, in the case of PM2.5, vise versa.

Development of Cloud and Shadow Detection Algorithm for Periodic Composite of Sentinel-2A/B Satellite Images (Sentinel-2A/B 위성영상의 주기합성을 위한 구름 및 구름 그림자 탐지 기법 개발)

  • Kim, Sun-Hwa;Eun, Jeong
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.989-998
    • /
    • 2021
  • In the utilization of optical satellite imagery, which is greatly affected by clouds, periodic composite technique is a useful method to minimize the influence of clouds. Recently, a technique for selecting the optimal pixel that is least affected by the cloud and shadow during a certain period by directly inputting cloud and cloud shadow information during period compositing has been proposed. Accurate extraction of clouds and cloud shadowsis essential in order to derive optimal composite results. Also, in the case of an surface targets where spectral information is important, such as crops, the loss of spectral information should be minimized during cloud-free compositing. In thisstudy, clouds using two spectral indicators (Haze Optimized Tranformation and MeanVis) were used to derive a detection technique with low loss ofspectral information while maintaining high detection accuracy of clouds and cloud shadowsfor cabbage fieldsin the highlands of Gangwon-do. These detection results were compared and analyzed with cloud and cloud shadow information provided by Sentinel-2A/B. As a result of analyzing data from 2019 to 2021, cloud information from Sentinel-2A/B satellites showed detection accuracy with an F1 value of 0.91, but bright artifacts were falsely detected as clouds. On the other hand, the cloud detection result obtained by applying the threshold (=0.05) to the HOT showed relatively low detection accuracy (F1=0.72), but the loss ofspectral information was minimized due to the small number of false positives. In the case of cloud shadows, only minimal shadows were detected in the Sentinel-2A/B additional layer, but when a threshold (= 0.015) was applied to MeanVis, cloud shadowsthat could be distinguished from the topographically generated shadows could be detected. By inputting spectral indicators-based cloud and shadow information,stable monthly cloud-free composited vegetation index results were obtained, and in the future, high-accuracy cloud information of Sentinel-2A/B will be input to periodic cloud-free composite for comparison.

Water shortage assessment by applying future climate change for boryeong dam using SWAT (SWAT을 이용한 기후변화에 따른 보령댐의 물부족 평가)

  • Kim, Won Jin;Jung, Chung Gil;Kim, Jin Uk;Kim, Seong Joon
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.12
    • /
    • pp.1195-1205
    • /
    • 2018
  • In the study, the water shortage of Boryeong Dam watershed ($163.6km^2$) was evaluated under future climate change scenario. The Soil and Water Assessment Tool (SWAT) was used considering future dam release derived from multiple linear regression (MLR) analysis. The SWAT was calibrated and verified by using daily observed dam inflow and storage for 12 years (2005 to 2016) with average Nash-Sutcliffe efficiency of 0.59 and 0.91 respectively. The monthly dam release by 12 years MLR showed coefficient of determination ($R^2$) of above 0.57. Among the 27 RCP 4.5 scenarios and 26 RCP 8.5 scenarios of GCM (General Circulation Model), the RCP 8.5 BCC-CSM1-1-M scenario was selected as future extreme drought scenario by analyzing SPI severity, duration, and the longest dry period. The scenario showed -23.6% change of yearly dam storage, and big changes of -34.0% and -24.1% for spring and winter dam storage during 2037~2047 period comparing with 2007~2016 period. Based on Runs theory of analyzing severity and magnitude, the future frequency of 5 to 10 years increased from 3 in 2007~2016 to 5 in 2037~2046 period. When considering the future shortened water shortage return period and the big decreases of winter and spring dam storage, a new dam operation rule from autumn is necessary for future possible water shortage condition.

Changes in Temperature and Humidity in the Forest Caused by Development (도로에 의한 산림 내 온습도 변화)

  • Choi, Jaeyong;Park, Myung-Soo;Kim, Su-Kyung;Yu, Seung-Hyeon;Choi, Won-Tae;Song, Wonkyong;Kim, Whee-Moon;Kim, Seoung-Yeal;Lee, Ji-Young
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.6
    • /
    • pp.604-617
    • /
    • 2018
  • As the depletion of forests became more widespread due to the increase in the number of roads, the research was conducted on the relationship between temperature and humidity in the forests, assuming that the forests around the roads were affected. Through the forest monitoring, the temperature and humidity of coniferous forests and broadleaf forests in Sedong and Gongju areas were observed at three point of 10m, 20m and 30m from the road boundary to the inside of the forest, respectively. In Yeongdong area, for more reliable results, it was observed from the point of 0m, 10m, and 20m. During the study period, so it was expected the change in tree growth was small, the change of temperature and humidity inside the forest by the road was compared with the temperature and humidity from the road to the inside of the forest from September 2017 to January 2018, the changes of temperature and humidity inside the forest due to linear development such as roads were quantitatively analyzed. Using the HOBO data logger (MX2301, Onset Corp.), the temperature and humidity changes of each site were measured, and the average of the changes have been analyzed monthly. In the case of Gongju coniferous forests in September 2017, the average weekly temperature is $0.57^{\circ}C$ higher than the forest outside from the forest boundary and $1.23^{\circ}C$ higher than the inside of the forest, at night in November 2017, in Sedong broadleaf forests. That is, the ability to control the temperature and humidity of the forests along the road was larger and less variable as the distance from the road boundary to the inside of the forest increased. In this study, it is considered that the high degree of change in temperature and humidity of the forest and the surrounding area due to artificial linear development such as roads will affect the growth of trees. This results could serve as a basis for studying the quantitative scope of linear development affecting forest growth and for managing forest change caused by linear development.

Temporal Variations of Sea Water Environment and Nutrients in the East Coast of Korea in 2013~2017: Sokcho, Jukbyeon and Gampo Coastal Areas (2013~2017년 동해 연안의 해양환경과 영양염의 시간적 변동 : 속초, 죽변, 감포 연안)

  • Kwon, Kee-Young;Shim, Jeong Hee;Shim, Jeong-Min
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.4
    • /
    • pp.457-467
    • /
    • 2019
  • To investigate the long-term variation characteristics of nutrients in the east coast of Korea, water temperature, salinity, dissolved oxygen, and nutrients were measured at three stations of Sokcho, Jukbyeon and Gampo coasts for five years from 2013 to 2017. For five years, the water temperature of the East Sea coast was in the range of $1.2{\sim}28.8^{\circ}C$, the salinity was in the range of 30.63~34.79 and the dissolved oxygen (DO) was in the range of 3.53~7.64 mL/L. Distribution and variation of the water environment factors in the study area were determined by the vertical stratification of water column and distribution of water temperature. The high DO concentration in Sokcho coast From 2015 to August 2016 is presumed to be the result of the southward inflow of North Korean Cold Water (NKCW). Concentrations of dissolved inorganic nitrogen (DIN, $NH_4-N+NO_2-N+NO_3-N$) ranged $0.11{\sim}24.19{\mu}M$, phosphate concentration ranged $0.01{\sim}1.75{\mu}M$, and silicate ranged $0.17{\sim}32.80{\mu}M$. The N:P ratio was in the range of 0.7~54.3 (mean 15.2) and the N:P slope was in the range of 11.67~13.75. The N:P ratios in this study were lower than the Redfield ratio (16), indicating that nitrate did act as a limiting factor in phytoplankton growth. The correlation ($R^2$) of total N:P ratio was as high as 0.95, indicating that the effect of the surrounding land or non-point sources was not significant. In conclusion, the spatial and temporal variation of nutrients in the east coast of Korea was determined by the vertical mixing of water mass with thermocline and mainly affected by physical factors such as influx of external water masses and coastal upwelling, and the influences from inflows from the land were minimal.

Mosquito Prevalence and Flavivirus Infection Rates in Gangwon-do, Republic of Korea (2012~2017년 강원지역에서 채집된 모기의 계절적 발생소장과 플라비바이러스 감염률)

  • Chung, Se-Jin;Ko, Seuk-Hyun;Ko, Eun-Mi;Lim, Eun-Joo;Kim, Young-Su;Lee, Wook-Gyo;Lee, Dong-Kyu
    • Korean journal of applied entomology
    • /
    • v.58 no.2
    • /
    • pp.89-99
    • /
    • 2019
  • In total, 654,362 adult mosquitoes were captured using black light traps in Gangwon-do Province of the Republic of Korea from 2012 to 2017. The collected mosquitoes were identified to the species level, placed in pools of up to 50 mosquitoes each, by species and date of collection, and screened for flaviviruses using a reverse transcription-polymerase chain reaction assay. A total of 276,224 adult mosquitoes were grouped in 7,721 pools for virus testing, and 68 flavivirus positive pools (0.9%) were detected. Flavivirus-positive products were confirmed by DNA sequencing. Japanese encephalitis viruses were detected in single pools collected from Chuncheon (2012, 2017: Culex pipiens, 2,728 and 1,111 mosquitoes, respectively), Hoengseong (2013: Culex orientalis, 19), and Gangneung (2017: C. pipiens, 724). All the Japanese encephalitis viruses detected were revealed as genotype V. Chaoyang viruses were detected in 63 pools of 5,055 Aedes vexans nipponii and a single pool of 585 C. pipiens collected in Gangwon-do Province from 2012 to 2017. Chuncheon was the region with the highest minimum infection rates (MIR, 0.32) and maximum likehood estimate (MLE, 0.33; confidence interval (CI) 95%, 0.23-0.46) of A. vexans nipponii for Chaoyang virus, followed by Hoengseong (MIR 0.30, MLE 0.30, CI 0.16-0.52) and Gangneung (MIR 0.21, MLE 0.21, CI 0.13-0.31). Monthly MIR and MLE values of A. vexans nipponii for Chaoyang virus were the highest in October (MIR 0.38, MLE 0.38, CI 0.07-1.25).

Establishment of Geospatial Schemes Based on Topo-Climatology for Farm-Specific Agrometeorological Information (농장맞춤형 농업기상정보 생산을 위한 소기후 모형 구축)

  • Kim, Dae-Jun;Kim, Soo-Ock;Kim, Jin-Hee;Yun, Eun-Jeong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.3
    • /
    • pp.146-157
    • /
    • 2019
  • One of the most distinctive features of the South Korean rural environment is that the variation of weather or climate is large even within a small area due to complex terrains. The Geospatial Schemes based on Topo-Climatology (GSTP) was developed to simulate such variations effectively. In the present study, we reviewed the progress of the geospatial schemes for production of farm-scale agricultural weather data. Efforts have been made to improve the GSTP since 2000s. The schemes were used to provide climate information based on the current normal year and future climate scenarios at a landscape scale. The digital climate maps for the normal year include the maps of the monthly minimum temperature, maximum temperature, precipitation, and solar radiation in the past 30 years at 30 m or 270 m spatial resolution. Based on these digital climate maps, future climate change scenario maps were also produced at the high spatial resolution. These maps have been used for climate change impact assessment at the field scale by reprocessing them and transforming them into various forms. In the 2010s, the GSTP model was used to produce information for farm-specific weather conditions and weather forecast data on a landscape scale. The microclimate models of which the GSTP model consists have been improved to provide detailed weather condition data based on daily weather observation data in recent development. Using such daily data, the Early warning service for agrometeorological hazard has been developed to provide weather forecasts in real-time by processing a digital forecast and mid-term weather forecast data (KMA) at 30 m spatial resolution. Currently, daily minimum temperature, maximum temperature, precipitation, solar radiation quantity, and the duration of sunshine are forecasted as detailed weather conditions and forecast information. Moreover, based on farm-specific past-current-future weather information, growth information for various crops and agrometeorological disaster forecasts have been produced.