• Title/Summary/Keyword: 원전 증기발생기

Search Result 156, Processing Time 0.023 seconds

Nozzle Dam Design Improvement in Steam Generator (증기 발생기용 노즐댐 설계개선)

  • Kim, Tae-Ryong;Park, Jin-Seok;Jung, Seung-Ho;Park, Jin-Ho
    • Nuclear Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.327-335
    • /
    • 1995
  • The normal shutdown and maintenance period of a nuclear power plant can be remarkably shortened when the examination and maintenance works in steam generator tubes are simultaneously carried out with refueling job. There are nozzle dams to Hock the coolant How from reactor to steam generator. Workers are reluctant to install nozzle dam because of the high radiation exposure and the limited working space in steam generator. Moreover, the heavy weight of present nozzle dam makes it installation and removal works much difficult. In this paper, a lighter KAERI nozzle dam with increased flexural rigidity-to-weight was designed and manufactured by changing the structure design of the present nozzle dam and by selecting new material, carbon fiber-reinforced plastic.

  • PDF

An Analysis of the Loss of Residual Heat Removal System Event for Pressurized Water Reactor at Reduced Inventory Operation (가압경수로의 저수위 운전시 잔열제거계통 상실사고에 대한 분석)

  • Han, Kee-Soo;Song, Jin-Ho
    • Nuclear Engineering and Technology
    • /
    • v.27 no.5
    • /
    • pp.645-660
    • /
    • 1995
  • The loss of Residual Heat Removal System (RHRS) event during reduced inventory operation for the Korean Standard Nuclear Power Plants (KSNPPS) is simulated by RELAP5/MOD3 and RELAP5/MOD3.1 Tn cases are considered : Base case for an intact Reactor Coolant System (RCS) with no tent and a vent case for an open system. Comparative simulations of base case are peformed by RELAP5/MOD3 and RELAP5/MOD3. 1 computer codes. The results of too simulations are generally in good qualitative and quantitative agreement. However, since the results of RELAP5/MOD3 simulation reveals the deficiency of RELAP5/MOD3 wall heat model, the RELAP5/AOD3.1 computer code is used for the simulation of the vent case. The analysis result of base case show that two steam generators are insufficient to remove decay heat at one day after shutdown, where the RCS is closed. The RCS pressure increased continuously and reached the RCS temporary boundaries design pressure of 0.24 MPa around 4,000 seconds. In the vent case with a flow capacity equivalent to three times the capacity of Pressurizer Safety Valve (PSV), it is shown that the RCS Pressure does not reach 0.24 MPa and core uncovery does not occur until 10,000 seconds. The detailed discussions on the results of this study suggest the feasibility of RELAP5/AOD3.1 as an analysis tool for the simulation of the loss of RHRS event at reduced inventory operation. The results of this study also provide insight for the determination of proper vent capacity.

  • PDF

A Study on Managing of Metal Loss by Flow-Accelerated Corrosion in the Secondary Piping of CANDU Nuclear Plants (CANDU형 원전 2차 배관의 침부식 감육 관리방법에 관한 연구)

  • 심상훈;송정수;윤기봉;황경모;진태은;이성호
    • Journal of Energy Engineering
    • /
    • v.11 no.1
    • /
    • pp.18-25
    • /
    • 2002
  • One of the most serious concern in nuclear power plant piping maintenance is thickness reduction due to flow-accelerated corrosion (FAC). Since the FAC occurs under specific conditions of pH, dissolved oxygen, temperature, flow velocity, steam quality of the fluid and materials and geometry of the piping, a systematic approach is required for managing the FAC problem. In this study, construction of a secondary piping database, analyzing the FAC rate using the database and predicting the residual life was performed for a domestic CANDU nuclear power plant. Also FAC mechanism and factors affecting FAC were reviewed. By showing a case study on analysis for a pipe line between a separator and a flash tank, a procedure for managing FAC problem is suggested. The procedure proposed in this paper can be widely applied to the secondary piping of other domestic nuclear polder plants.

고온 물에서 304 와 600 합금의 입계응력부식균열(IGSCC)의 상이성과 유사성

  • 권혁상;김수정
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 1998.05a
    • /
    • pp.22-22
    • /
    • 1998
  • 304 는 BWR(boiling water reactor)의 reactor 구조용 재료로 사용되고 있고, 합금 600 은 PWR(pressurized water reator) 의 증기 발생기 세관으로 쓰이고 있으며 모두 약 $280{\;}^{\circ}C$ 이상 의 원자로 냉각수에 노출되어 있다. 원자로 냉각수 분위기에서 두 합금의 공통적인 특정은 입계응력부식균열(IGSCC)에 민감한것과 IGSCC가 예민화(sensitization)와 관련이 있는 것이 다. 두 합금에서 일어나는 IGSCC는 원자력발전소의 부식피해중 가장 빈도가 높고 발생시 방사능 누출로 인하여 원전의 신뢰성을 저하시키고, 가동중단으로 인한 경제적 손실을 초 래하여 지난 20 년 동안 가장 심도있게 연구된 주제다. 304 은 크롬 탄화물의 업계 석출로 언하여 예민화된경우 IGSCC 에 민감한 반면 600 은 예민화된 경우 뿐만 아니라 용체화처리된 상태에서도 IGSCC에 민감하다. 오히려 600은 용 체화처리 후 700 C에서 15~20시간 시효처리를 하여 크롬탄화물을 업계에 석출 시커었을 때 IGSCC 저항성이 향상된다. 두 합금의 IGSCC 특정 중 큰 차이는 304는 임계균열전위 ( (critical cracking potential) 이 존재하여 부식전위(corrosion potential) 가 엄계균열전위보다 낮 은 경우 IGSCC 가 일어나지 않지만 그 반대인 경우 IGSCC 에 민감하게된다. 반면에 600 은 뚜렷한 임계균열전위가 존재하지 않고 양극 분극(anodic polarization) 뿐만 아니라 음극분극 시에도 IGSCC 가 일어난다. 이련 이유로 600의 IGSCC 가구로 피막파괴-양극용해(film rupture-anodic dissolution)외에 수소취성(hydrogen embrittlement)기구도 제안되고 었다. 원전의 냉각수는 고 순도의 물이지만 수 처리 과정과 웅축기 배관의 누수로 인한 산소, $Cu^{2+},{\;}S_xO_6{\;}^{2-}(x=3~6)$ 등이 유입되어 오염되는데 이려한 오염물질들이 수 ppm정도 소량 포함된 경우 응 력부식민감도는 상당히 증가된다. 산성분위기 흑은 산소, $Cu^{2+}$, 등이 소량 포합된 산화성 분위기 그리고 sufur oxyanion 에 오염된 고온의 물에서 600 의 IGSCC 민감도는 예민화도가 증가할 수록 민감하여 304 의 IGSCC 와 매우 유사한 거동을 보인다. 본 강연에서는 304 와 600 의 고온 물에서 일어나는 IGSCC 민감도에 미치는 환경, 예민화처리, 합금원소의 영향을 고찰하고 이에 대한 최근의 연구 동향과 방식 방법을 다룬다.

  • PDF

A Study on Water Level Control of PWR Steam Generator at Low Power Operation and Transient States (저출력 및 과도상태시 원전 증기발생기 수위제어에 관한 연구)

  • Na, Nan-Ju;Kwon, Kee-Choon;Bien, Zeungnam
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.3 no.2
    • /
    • pp.18-35
    • /
    • 1993
  • The water level control system of the steam generator in a pressurized water reactor and its control problems are analysed. In this work the stable control strategy during the low power operation and transient states is studied. To solve the problem, a fuzzy logic control method is applied as a basic algorithm of the controller. The control algorithm is based on the operator's knowledges and the experiences of manual operation for water level control at the compact nuclear simulator set up in Korea Atomic Energy Research Institute. From a viewpoint of the system realization, the control variables and rules are established considering simpler tuning and the input-output relation. The control strategy includes the dynamic tuning method and employs a substitutional information using the bypass valve opening instead of incorrectly measured signal at the low flow rate as the fuzzy variable of the flow rate during the pressure control mode of the steam generator. It also involves the switching algorithm between the control valves to suppress the perturbation of water level. The simulation results show that both of the fine control action at the small level error and the quick response at the large level error can be obtained and that the performance of the controller is improved.

  • PDF

Methodology to Decide Optimum Replacement Term for Components of Nuclear Power Plants (원전 기기의 최적교체시기 결정방법)

  • 문호림;장창희;박준현;정일석
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2000.11a
    • /
    • pp.257-267
    • /
    • 2000
  • Mostly, the economic analyses for replacement of major components of nuclear power Plants(NPPs) have been performed in deterministic ways. However, the analysis results are more or less affected by the uncertainties associated with input variables. Therefore, it is desirable to use a probabilistic economic analysis method to properly consider uncertainty of real problem. In this paper, the probabilistic economic analysis method and decision analysis technique are briefly described. The probabilistic economy analysis method using decision analysis will provide efficient and accurate way of economic analysis for the repair and/or replace mai or components of NPPs.

  • PDF

A Study of MMS Computer Program for Dynamic Analysis of Power Plant (발전소 동적 성능분석에 관한 연구)

  • 홍용표;곽병엽;윤명열
    • Journal of Energy Engineering
    • /
    • v.2 no.1
    • /
    • pp.28-37
    • /
    • 1993
  • This paper describes the development of a dynamic model of 1,000 MW$\_$e/ nuclear power plant including its local and integrated control system. The model was constructed using the Modular Modeling System (MMS) developed by the Electric Power Research Institute (EPRI) to provide an efficient, economical and user-friendly computer code for use in the analysis of the dynamic performance of nuclear and fossil power plants in conjunction with the Advanced Continuous Simulation Language (ACSL). Steady state for full load and transient results for turbine power step changes of loft are presented in this paper. The model includes most major components of a 1,000 MW$\_$e/ nuclear power plant and it can readily be modified to simulate a specific power plant. This procedure greatly reduces the analysis and modeling efforts involved in dynamic simulation of power plants and increases confidence in the analysis results.

  • PDF

Analysis on Hypothetical Multiple Events of mSGTR and SBO at CANDU-6 Plants Using MARS-KS Code (중수로 원전 가상의 mSGTR과 SBO 다중 사건에 대한 MARS-KS 코드 분석)

  • Seon Oh YU;Kyung Won LEE;Kyung Lok BAEK;Manwoong KIM
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.17 no.1
    • /
    • pp.18-27
    • /
    • 2021
  • This study aims to develop an improved evaluation technology for assessing CANDU-6 safety. For this purpose, the multiple steam generator tube rupture (mSGTR) followed by an unmitigated station blackout (SBO) in a CANDU-6 plant was selected as a hypothetical event scenario and the analysis model to evaluate the plant responses was envisioned into the MARS-KS input model. The model includes logic models for controlling the pressure and inventory of the primary heat transport system (PHTS) decreasing due to the u-tubes' rupture, as well as the main features of PHTS with a simplified model for the horizontal fuel channels, the secondary heat transport system including the shell side of steam generators, feedwater and main steam line, and moderator system. A steady state condition was successfully achieved to confirm the stable convergence of the key parameters. Until the turbine trip, the fuel channels were adequately cooled by forced circulation of coolant and supply of main feedwater. However, due to the continuous reduction of PHTS pressure and inventory, the reactor and turbine were shut down and the thermal-hydraulic behaviors between intact and broken loops got asymmetric. Furthermore, as the conditions of low-flow coolant and high void fraction in the broken loop persisted, leading to degradation of decay heat removal, it was evaluated that the peak cladding temperature (PCT) exceeded the limit criteria for ensuring nuclear fuel integrity. This study is expected to provide the technical bases to the accident management strategy for transient conditions with multiple events.

Development of an intelligent and integrated system for automatic inspection of steam-generator tubes in nuclear power plant (원전 증기 발생기 전열관 검사 자동화를 위한 지능형 통합 시스템 개발)

  • Kang, Soon-Ju;Choi, Yoo-Rark;Choe, Seong-Su;Woo, Hee-Gon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.3
    • /
    • pp.236-241
    • /
    • 1996
  • This paper presents a new eddy current testing system for inspecting tubes of steam generator in nuclear power plant. The proposed system adopted embedded expert system concept to automate tasks of the inspection such as inspection planning and flaw signal interpretation, and integrated all the tasks into a client/server type computing architecture using database management system. Therefore, human factor errors occurred during inspection could be minimized and the inspection data could be transferred in real-time. As a result, we can increase the level of inspection confidence and the productivity of a personal inspector. A prototype of the proposed system has been developed for 5 years and the test operation has been performed in domestic nuclear power plants.

  • PDF

Analysis of the Vent Path Through the Pressurizer Manway Under the Loss of Residual Heat Removal(RHR) System During Mid-Loop Operation in PWR (가압경수로 부분충수 운전중 잔열제거 (RHR)계통 상실시 가압기 통로를 통한 배출유로 특성 분석)

  • Ha, G.S.;Kim, W.S.;Chang, W.P.;Yoo, K.J.
    • Nuclear Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.859-869
    • /
    • 1995
  • The present study is to understand the physical phenomena anticipated during the accident with RHR loss under mid-loop operation in a PWR and, at the same time, to examine the prediction capability of RELAP5/MOD3.1 on such an accident, by simulating an integral test relevant to this accident for reliable analysis in an actual PWR. The selected experiment, i.g. BETHSY Test 6.9a, represents the configuration with the pressurizer manway open and steam generators unavailable during the accident. Accordingly, the results of this ok are sure to contribute to understanding both the key events as well as the sensitive parameters, anticipated in the accident, for validity of the actual analysis. In the simulation result overall behavior as well as major phenomena observed in the experiment have been predicted reasonably by RELAP5/MOD3.1, however, the problem associated with enormous computing time .due to small time step size has been encountered. Besides, the code prediction of higher swollen level in the pressure vessel has given rise to overestimation of both pressurizer level and RCS pressure. Subsequently, overprediction of the break flow through the manway has led to earlier core uncovery than that in the experiment by about 400 seconds. As a whole, it is demonstrated from both the experiment and the analysis that gravity feed has not been sufficient to recover the core level and thus additional forced feed has been necessary in this configuration.

  • PDF