• Title/Summary/Keyword: 원자간력-현미경

Search Result 74, Processing Time 0.042 seconds

Nanotube-tip AFM for the application of photonic devices (나노튜브 탐침을 이용한 미세 광소자 측정 개선)

  • 정기영;송원영;오범환;박병천
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.302-303
    • /
    • 2003
  • 원자간력-현미경(Atomic Force Microscope)은 비파괴적인 방법으로 광소자의 단면 형상과 거칠기에 관한 정보를 원자단위의 해상도로 얻어낼 수 있다. 그러나 탐침의 형상에 의해서 공간분해능에 제한을 받는다. 이 문제를 해결하기 위해, 원자간력-현미경 탐침의 끝부분에 나노튜브를 부착하였다. 주사형 전자현미경에 설치한 나노조작기를 사용하여 나노튜브를 탐침에 밀착하도록 이동시킨 후에, 탄화물 증착으로 접착시키는 방법을 사용하였다.

  • PDF

A large surface-shape measurement method by using Atomic Force Microscope (원자간력 현미경을 이용한 대면적 표면 형상 측정 방법)

  • Shin Y.H.;Ko M.J.;Hong S.W.;Kwon H.K.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1543-1546
    • /
    • 2005
  • This paper presents a method to measure a large surface shape using atomic force microscopy, which has been used mostly for measuring over very tiny surfaces. Experiments are performed to measure a step height and a slope of a test sample. The proposed method is rigorously compared with the coordinate measuring machine. The repetition accuracy and the effects of the set point are also studied. The experimental results show that the proposed method is reliable and should be effective to measure both the nano-accuracy surface profile as well as the micro-accuracy global shape of a macro/micro parts using atomic force microscope.

  • PDF

A Study on Measurement Range Extension for Atomic Force Microscope (원자간력 현미경의 측정면적 확대에 관한 연구)

  • Ko Myung-Jun;Patrangenaru Vlad;Hong Seong-Wook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.4 s.181
    • /
    • pp.168-175
    • /
    • 2006
  • This paper presents surface matching algorithms that can be used to reconstruct the surface topography of an object scanned by an AFM. The essence of the algorithms is to match up neighboring images intentionally overlapped with others. Two performance indexes using the correlation coefficient and the sum of the squared differences are introduced. To compensate for the inaccuracy of the coarse stage implemented to AFM, all the six axes including the rotational degrees of freedom are successively matched so as to maximize the coefficients defined. The results show that the proposed algorithms are useful for measurement range extension of AFM. The results also show that a combined use of the two indexes is beneficial for practical cases.

Improved algorithm for measurement area expansion of atomic force microscope using Image pyramid method (영상 피라미드법을 이용한 원자간력 현미경의 측정면적 확대 알고리즘 개선)

  • Ko M.J.;Seo Y.K.;Hong S.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.483-484
    • /
    • 2006
  • This paper introduces an improved surface matching algorithm that can be used to reconstruct the surface topography of an object that is scanned from multiple overlapping regions by an AFM. The essence of the image matching technique is stitching two neighboring images intentionally overlapped with each other. To enhance the computational efficiency, this paper introduces a pyramid matching algorithm which makes use of reduced images for primary images. The results show that the proposed image pyramid matching algorithm is useful fer enhancing the computational efficiency.

  • PDF

Development of a Measurement System for the Surface Shape of Micro-parts by Using Atomic Force Microscope (원자간력 현미경을 이용한 초소형 마이크로 부품 표면 형상 측정 시스템 개발)

  • Hong Seong-Wook;Ko Myung-Jun;Shin Young-Hyun;Lee Deug-Woo
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.6
    • /
    • pp.22-30
    • /
    • 2005
  • This paper proposes a measurement method for the surface shape of micro-parts by using an atomic force microscope(AFM). To this end, two techniques are presented: First, the measurement range is expanded by using an image matching method based on correlation coefficients. To account for the inaccuracy of the coarse stage implemented in AFM, the image matching technique is applied to two neighboring images intentionally overlapped with each other. Second, a method to measure the shape of relatively large specimen is proposed that utilizes the inherent trigger mechanism due to the atomic force. The proposed methods are proved effective through a series of experiments.

Development of Image Matching Algorithm to Expand Measuring Area of Atomic Force Microscope (원자간력 현미경의 측정면적 확대를 위한 영상정합 알고리즘 개발)

  • Ko M.J;Patrangenaru V.;Hong S.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.568-571
    • /
    • 2005
  • This paper introduces a correlation-based surface matching algorithm that can be used to reconstruct the surface topography of an object that is scanned from multiple overlapping regions by an AFM. The image matching technique is applied to two neighboring images intentionally overlapped with each other. To account for the inaccuracy of the coarse stage implemented in AFM, all the six axes including the rotational degrees of freedom are successively matched to maximize the correlation coefficient. The results show that the proposed 6-axes image matching method is useful for expanding the measurement range of AFM.

  • PDF