• Title/Summary/Keyword: 원심형 혈액 펌프

Search Result 8, Processing Time 0.02 seconds

A Study on Shape Optimization and Hemolysis Evaluation of Axial Flow Blood Pump by Using Computational Fluid Dynamics Analysis (CFD해석을 이용한 축류형 혈액펌프의 용혈평가 및 형상개량에 관한 기초연구)

  • 김동욱;임상필
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.1
    • /
    • pp.57-64
    • /
    • 2004
  • The non pulsation blood pump is divided into axial flow and centrifugal style according to the direction of inlet and outlet flow. An axial flow blood pump can be made smaller than a centrifugal blood pump because centrifugal pump's rpm is fewer than axial flow pump. Hemolysis is an important factor for the development of an axial flow blood pump. It is difficult to identify the areas where hemolysis occurs. Evaluation of hemolysis both in in-vitro and in-vivo test requires a long-time and more expensive. Computational fluid dynamics(CFD) analysis enables the engineer to predict hemolysis on a computer which just can get not only amount of htmolysis but also location of hemolysis. It takes shorter time and less expensive than in-vitro test. The purpose of this study is to git Computational fluid dynamics in axial flow pump and to verify the accuracy of prediction by the possibility of design comparing CFD results with in-vitro experimental results. Also, wish to figure out the correction method that can bring improvement in shape of axial flow blood pump using CFD analysis.

Hydraulic Design Optimization and Performance Analysis of a Centrifugal Blood Pump (원심형 혈액펌프의 최적화 수력설계 및 성능해석)

  • Park Moo Ryong;Yoo Seong Yeon;Oh Hyoung Woo;Yoon Eui Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.1 s.244
    • /
    • pp.87-94
    • /
    • 2006
  • This paper presents the hydrodynamic design and performance analysis method for a miniaturized centrifugal blood pump using three-dimensional computational fluid dynamics (CFD) code. In order to obtain the hydraulically high efficient configuration of a miniaturized centrifugal blood pump for cardiopulmonary circulation, a well-established commercial CFD code was incorporated considering detailed flow dynamic phenomena in the blood pump system. A prototype of centrifugal blood pump developed by the present design and analysis method has been tested in the mock circulatory system. Predicted results by the CFD code agree very well with in vitro hydraulic performance data for a centrifugal blood pump over the entire operating conditions. Preliminary in vivo animal testing has also been conducted to demonstrate the hemodynamic feasibility for use of centrifugal blood pump as a mechanical circulatory support. A miniaturized centrifugal blood pump developed by the hydraulic design optimization and performance prediction method presented herein shows the possibility of a good candidate for intra and extracorporeal cardiopulmonary circulation pump in the near future.

An Experimental Setup for Measuring the Performance of Blood Pumps (혈액펌프 성능평가를 위한 실험장치 구성)

  • Kim, Sung-Gil;Hong, Seokbin;Kim, Taehong;Kim, Wonjung;Kang, Seongwon;Kang, Shin-Hyoung;Hur, Nahmkeon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.6
    • /
    • pp.55-60
    • /
    • 2016
  • We present an experimental setup for measuring the mechanical performance of centrifugal blood pumps. Using a 3D printer to construct supporting parts and magnetic couplings, we developed the measurement setup that can be used for various types of blood pumps. The experimental setup is equipped with sensors to measure a variety of mechanical characteristics of blood pumps including pressure, flow rate, torque, temperature, and rotating speed. Our experimental measurements for two commercial blood pumps are consistent with data provided by manufacturers, which indicates that the our setup offers the accurate measurements of blood pump performance. Utilizing the experimental setup, we tested aqueous glycerin solutions mimicking the density and viscosity of blood, which enabled us to predict the difference in operations using water and blood.

DESIGN OF A CENTRIFUGAL BLOOD PUMP FOR ECMO DEVICE THROUGH NUMERICAL ANALYSES (수치해석을 통한 ECMO용 원심형 혈액 펌프 설계)

  • Choi, S.;Hur, N.;Moshfeghi, M.;Kang, S.;Kim, W.;Kang, S.H.
    • Journal of computational fluids engineering
    • /
    • v.21 no.1
    • /
    • pp.103-109
    • /
    • 2016
  • With the rapid increase in the number of patients with cardiopulmonary diseases, more cardiopulmonary circulatory assist devices are also needed. These devices can be employed when heart and/or lung function poorly. Due to the critical role they take, these devices have to be designed optimally from both mechanical and biomechanical aspects. This paper presents the CFD results of a baseline model of a centrifugal blood pump for the ECMO condition. The details of flow characteristics of the baseline model together with the performance curves and the modified index of hemolysis(MIH) are investigated. Then, the geometry of baseline impeller and the volute are modified in order to improve the biomechanical performance and reduce the MIH value. The numerical simulations of two cases represent that when impeller radius and prime volume decrease the MIH value also decreases. In addition, the modified geometry shows more uniform pressure distribution inside the volute. The findings provide valuable information for further modification and improvement of centrifugal blood pumps from both mechanical and biomechanical aspects.

Blood Flow and Pressure Evaluation for a Pulsatile Conduit-Shaped Ventricular Assist Device with Structural Characteristic of Conduit Shape (관형의 구조적 특징을 갖춘 박동형 관형 심실보조장치의 혈류, 혈압 평가)

  • Kang, Seong-Min;Choi, Seong-Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.11
    • /
    • pp.1191-1198
    • /
    • 2011
  • The use of a ventricular assist device (VAD) can raise the one-year survival rate without cardiac transplantation from 25% to 52%. However, malfunction of the VAD system causes 6% of VAD patients' deaths, which could possibly be avoided through the development of new VADs in which VAD malfunctions do not affect the patient's heart movement or hemodynamic state. A conventional VAD has an impeller or vane for propelling blood that can allow blood to regurgitate when the propelling force is weaker than the aortic pressure. In this paper, we developed a new pulsatile conduit-shaped VAD that has two valves. This device removes the possibility of blood regurgitation and has a small stationary area even when the pumping force is extremely weak. We estimated the characteristics of the device by measuring the outflow and the pressure of the pump in in-vitro and in-vivo experiments.

Application of a Single-pulsatile Extracorporeal Life Support System for Extracorporeal Membrane Oxygenation -An experimental study - (단일 박동형 생명구조장치의 인공폐 적용 -실험연구-)

  • Kim, Tae-Sik;Sun, Kyung;Lee, Kyu-Baek;Park, Sung-Young;Hwang, Jae-Joon;Son, Ho-Sung;Kim, Kwang-Taik;Kim. Hyoung-Mook
    • Journal of Chest Surgery
    • /
    • v.37 no.3
    • /
    • pp.201-209
    • /
    • 2004
  • Extracorporeal life support (ECLS) system is a device for respiratory and/or heart failure treatment, and there have been many trials for development and clinical application in the world. Currently, a non-pulsatile blood pump is a standard for ECLS system. Although a pulsatile blood pump is advantageous in physiologic aspects, high pressure generated in the circuits and resultant blood cell trauma remain major concerns which make one reluctant to use a pulsatile blood pump in artificial lung circuits containing a membrane oxygenator. The study was designed to evaluate the hypothesis that placement of a pressure-relieving compliance chamber between a pulsatile pump and a membrane oxygenator might reduce the above mentioned side effects while providing physiologic pulsatile blood flow. The study was performed in a canine model of oleic acid induced acute lung injury (N=16). The animals were divided into three groups according to the type of pump used and the presence of the compliance chamber, In group 1, a non-pulsatile centrifugal pump was used as a control (n=6). In group 2 (n=4), a single-pulsatile pump was used. In group 3 (n=6), a single-pulsatile pump equipped with a compliance chamber was used. The experimental model was a partial bypass between the right atrium and the aorta at a pump flow of 1.8∼2 L/min for 2 hours. The observed parameters were focused on hemodynamic changes, intra-circuit pressure, laboratory studies for blood profile, and the effect on blood cell trauma. In hemodynamics, the pulsatile group II & III generated higher arterial pulse pressure (47$\pm$ 10 and 41 $\pm$ 9 mmHg) than the nonpulsatile group 1 (17 $\pm$ 7 mmHg, p<0.001). The intra-circuit pressure at membrane oxygenator were 222 $\pm$ 8 mmHg in group 1, 739 $\pm$ 35 mmHg in group 2, and 470 $\pm$ 17 mmHg in group 3 (p<0.001). At 2 hour bypass, arterial oxygen partial pressures were significantly higher in the pulsatile group 2 & 3 than in the non-pulsatile group 1 (77 $\pm$ 41 mmHg in group 1, 96 $\pm$ 48 mmHg in group 2, and 97 $\pm$ 25 mmHg in group 3: p<0.05). The levels of plasma free hemoglobin which was an indicator of blood cell trauma were lowest in group 1, highest in group 2, and significantly decreased in group 3 (55.7 $\pm$ 43.3, 162.8 $\pm$ 113.6, 82.5 $\pm$ 25.1 mg%, respectively; p<0.05). Other laboratory findings for blood profile were not different. The above results imply that the pulsatile blood pump is beneficial in oxygenation while deleterious in the aspects to high pressure generation in the circuits and blood cell trauma. However, when a pressure-relieving compliance chamber is applied between the pulsatile pump and a membrane oxygenator, it can significantly reduce the high circuit pressure and result in low blood cell trauma.

Comparison of Pulsatile and Non-Pulsatile Extracorporeal Circulation on the Pattern of Coronary Artery Blood Flow (체외순환에서 박동 혈류와 비박동 혈류가 관상동맥 혈류양상에 미치는 영향에 대한 비교)

  • Son Ho Sung;Fang Yong Hu;Hwang Znuke;Min Byoung Ju;Cho Jong Ho;Park Sung Min;Lee Sung Ho;Kim Kwang Taik;Sun Kyung
    • Journal of Chest Surgery
    • /
    • v.38 no.2 s.247
    • /
    • pp.101-109
    • /
    • 2005
  • Background: In sudden cardiac arrest, the effective maintenance of coronary artery blood flow is of paramount importance for myocardial preservation as well as cardiac recovery and patient survival. The purpose of this study was to directly compare the effects of pulsatile and non-pulsatile circulation to coronary artery flow and myocardial preservation in cardiac arrest condition. Material and Method: A cardiopulmonary bypass circuit was constructed in a ventricular fibrillation model using fourteen Yorkshire swine weighing $25\~35$ kg each. The animals were randomly assigned to group I (n=7, non-pulsatile centrifugal pump) or group II (n=7, pulsatile T-PLS pump). Extra-corporeal circulation was maintained for two hours at a pump flow of 2 L/min. The left anterior descending coronary artery flow was measured with an ultrasonic coronary artery flow measurement system at baseline (before bypass) and at every 20 minutes after bypass. Serologic parameters were collected simultaneously at baseline, 1 hour, and 2 hours after bypass in the coronary sinus venous blood. The Mann-Whitney U test of STATISTICA 6.0 was used to determine intergroup significances using a p value of < 0.05. Result: The resistance index of the coronary artery was lower in group II and the difference was significant at 40 min, 80 min, 100 min and 120 min (p < 0.05). The mean velocity of the coronary artery was higher in group II throughout the study, and the difference was significant from 20 min after starting the pump (p < 0.05). The coronary artery blood flow was higher in group II throughout the study, and the difference was significant from 40 min to 120 min (p < 0.05) except at 80 min. Serologic parameters showed no differences between the groups at 1 hour and 2 hours after bypass in the coronary sinus blood. Conclusion: In cardiac arrest condition, pulsatile extracorporeal circulation provides more blood flow, higher flow velocity and less resistance to coronary artery than non-pulsatile circulation.