• Title/Summary/Keyword: 원심임펠러

Search Result 144, Processing Time 0.029 seconds

Tip Clearance Effect of Low Mass Flow Rate High Specific Speed Centrifugal Impeller (저유량 고비속도 원심압축기 임펠러에서의 팁간극에 따른 효과)

  • Im, Kang-Soo;Kim, Yang-Gu;Kim, Kyi-Soon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.240-243
    • /
    • 2008
  • In this paper, the design of Centrifugal Compressor which is used in sizes 50 horse power has 8 pressure ratio and numerical analysis of the flow within compressor varying tip clearance length are performed. To get high pressure ratio with low power the exit height of impellers is low but compressor has very high speed of revolution. So compressor has high specific speed although mass flow rate is very small. The shape of impellers at the first stage is carried out. Flow and performance characteristics of impellers has been analyzed by using a commercial CFD program, $Fine^{TM}$/turbo. The result shows that loss coefficient is affected by tip clearance length and compressor has proper tip clearance length. It is possible to decrease loss by selecting apt tip clearance length.

  • PDF

Numerical Study on Effects of Geometrical Variables on Performance of A Centrifugal Compressor (원심압축기의 성능에 미치는 형상변수들의 영향에 대한 수치적 연구)

  • Kim, Jin-Hyuk;Kim, Kwang-Yong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.152-155
    • /
    • 2008
  • In this paper, the effect of modification of geometric variables on the performance of a centrifugal compressor blade has been studied numerically. The compressor contains six main blades and six splitter blades. Reynolds averaged Navier-Stokes (RANS) equations with shear stress turbulence (SST) model are discretized by finite volume approximations and solved on hexahedral grids for flow analysis. The design variables from blade lean angle at tip and middle of the blade have been modified. The isentropic blade efficiency and pressure have been predicted with the variation of the variables. Frozen rotor simulation is performed and adiabatic wall condition has been used. One of the six blades of compressor has been used for simulation to reduce the computational load. Optimum number of meshes has been selected by grid-dependency test, and this is used for all the simulations with changing geometric variables. The detailed flow analysis results have been reported as well as the effects of the variables.

  • PDF

Effect of impeller geometrical parameter on the performance of a centrifugal (임펠러 형상변수가 원심펌프 성능에 미치는 영향)

  • Kim, Sung;Choi, Young-Seok;Kim, Joon-Hyung;Yoon, Joon-Yong
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1303-1308
    • /
    • 2008
  • This paper presents effects of impeller geometrical parameters on the performance of a centrifugal pump impeller. The effects of meridional parameters and vane plane development parameters on the performance of the impeller were numerically studied using a commercial CFD code and DOE(design of experiments) software. Geometrical parameters in a method of meridional view and vane plane development were selected and defined to generate the 3D impeller shape. The response variables are defined in a total head and efficiency curve with flow rate. The influences of selected design variables on the various objective functions were examined as a result of the calculation using 2k factorial.

  • PDF

Performance Characteristics according to the Outlet Impeller Blade Shape of a Centrifugal Blower (원심블로어 임펠러 토출 날개 형상에 따른 성능특성)

  • Lee, Jong-Sung;Jeon, Hyun-Jun;Jang, Choon-Man
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.6
    • /
    • pp.12-18
    • /
    • 2013
  • This paper presents the performance characteristics of a centrifugal blower using the design parameters of an impeller blade. Two design variables, the bending length from the blade trailing edge and bending angles of an impeller blade, are introduced to analyze the effects on the blower performance. Three-dimensional Navier-Stokes equations with shear stress transport turbulence model are introduced to analyze the performance and internal flow of the blower. Relatively good agreement between experimental measurements and numerical simulation at the design flow condition is obtained. Throughout present study, it is known that pressure increases as the bending length from the trailing edge and bending angle increase while efficiency decreases. But efficiency is decreased. Detailed flow field inside the centrifugal blower is also analyzed and compared.

Aerodynamic Design and Numerical Analysis on a Transonic Centrifugal Compressor (천음속 원심압축기의 공력설계 및 수치해석)

  • Choi, Jae-Ho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.4
    • /
    • pp.56-62
    • /
    • 2008
  • This study presents the aerodynamic design and numerical analysis results on a transonic centrifugal compressor which is used for gas turbine systems. Mean-line analysis and quasi-3D analysis are used for the aerodynamic design, and Reynolds-averaged Navier-Stokes analysis is applied to flow analysis of the compressor. The aerodynamic parameters for a transonic compressor, such as pressure coefficient, swirl parameter, blade loading, are discussed, and flow characteristics in the impeller and diffuser are discussed.

Computational Study on the Performance of the Impeller Centrifugal Pump (원심펌프 회전차의 성능해석에 대한 전산해석적 연구)

  • Kim, Won-Kap;Kang, Shin-Hyoung
    • 유체기계공업학회:학술대회논문집
    • /
    • 1999.12a
    • /
    • pp.125-133
    • /
    • 1999
  • This paper reports the impeller performance of centrifugal pump, modified HES65-250. Developed CFD code uses SIMPLE algorithm, power-law scheme, standard k-$\epsilon$ turbulence model in curvilinear coordinate system. The calculations are conducted for 5 cases, from 0.6 to 1.4 of flow rate ratio with 0.2 increment. The flow characteristics inside of impeller are analysed. The results show that reversal flows exist at the inlet of impeller which have small rotary stagnation pressure. The obtained results are compared with the experimental data at impeller exit and shows good qualitative agreement.

  • PDF

Unstable Flow in a Vaneless Diffuser of 2-Dimensional Centrifugal Compressor (2차원 원심 압축기의 깃 없는 디퓨저에서의 불안정 유동)

  • Kang, Kyung-Jun;Shin, You-Hwan;Kim, Kwang-Ho;Lee, Yoon-Pyo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.4
    • /
    • pp.5-11
    • /
    • 2011
  • This study investigated on details of flow characteristics in a vaneless diffuser of a compressor with 2-dimensional impeller at various flow rates. Experiment for a low speed compressor model in a water reservoir was performed to analyze the flow field in the vaneless diffuser and volute casing, which was done by PIV measurement. It was also focused on the periodic flow patterns occurring at low flow rate near unstable operating region of the compressor. At low flow rate condition, the flow visualization clearly shows that the flow energy from impeller is highly accumulated at the compressor exit by the blockage effect of a flow damper and consequently the reverse flow occurs in the diffuser.

A Study of Aerodynamic Design of a Radial Turbine for BOP of MCFC Fuel Cell System (연료전지 BOP용 구심터빈 공력설계에 관한 연구)

  • Choi, Bum-Seog;Ahn, Kook-Young;Park, Moo-Ryong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.531-534
    • /
    • 2006
  • This study is concerned with radial turbine design and performance improvement of a turbo generator system, which is used for maximizing performance of a 250kW MCFC fuel cell system. A preliminary design of a radial turbine has been performed under the thermodynamic and fluid-dynamic conditions determined by a cycle analysis of the MCFC BOP system. Basic demensions are determined by a meanline analysis and calculation of radial variation at the exit of the turbine. The turbine impeller is designed and modified by iterative processes of three dimensional flow analysis.

  • PDF

원심압축기에서 물분사 압축과정에 대한 이론적 해석

  • Kang, Jeong-Seek;Cha, Bong-Jun;Yang, Soo-Seok
    • Aerospace Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.18-24
    • /
    • 2005
  • Wet compression means the injection of water droplets into the compressor of gas turbines. This method decreases the compression work and increases the turbine output by decreasing the compressor exit temperature through the evaporation of water droplets inside the compressor. This paper provides thermodynamic and aerodynamic analysis on wet compression in a centrifugal compressor for a microturbine. The meanline performance analysis of centrifugal compressor is coupled with the thermodynamic equation of wet compression to get the meanline performance of wet compression. The most influencing parameter in the analysis is the evaporative rate of water droplets. It is found that the impeller exit flow temperature and compression work decreases as the evaporative rate increases. And the exit flow angle decreases as the evaporative rate increases.

  • PDF

An Analysis of the Flow Field and Radiation Acoustic Field of Centrifugal Fan with Wedge -The Prediction of the Scattered Sound Field- (웨지가 있는 원심 임펠러의 유동장 및 방사 음향장 해석(II) -원심홴의 산란 음향장 예측-)

  • Lee, Deok-Ju;Jeon, Wan-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.9
    • /
    • pp.1165-1174
    • /
    • 2001
  • The objective of this study is to understand the generation mechanism of sound and to develop a prediction method for the acoustic pressure field of a centrifugal fan. If the fan is operating at the free field without the casing, the acoustic analogy is a good method to predict the acoustic of the fan. But, the casing gives a dominant effect to the radiated sound field and the scattering effect of casing should be considered. So, in this paper the Kirchhoff-BEM is developed, which can consider the scattering effect of the rigid body. In order to consider the scattering and diffraction effects owing to the casing, BEM is introduced. The source of BEM is newly developed, so the sound field of the centrifugal fan can be obtained. In order to compare the predicted one with experimental data, a centrifugal impeller and a wedge are used in the numerical calculation and the results are compared with the experimental data. Reasonable results are obtained not only for the peak frequencies but also for the amplitudes of the tonal sound. The radiated acoustic field shows the diffraction and scattering effects of the wedge clearly.