최근 코로나19로 인한 사회 환경의 급변화로 인하여 비대면/비접촉 기반 정보 교환 기술의 필요성이 급속도로 대두되고 있다. 이러한 변화들로 인해 몰입감, 임장감을 이용한 대안시스템의 개발이 절실히 요구되고 있다. 본 연구에서는 화상회의 시스템을 구현하기 위해 대용량 3차원 데이터를 지연 없이 실시간으로 전송하기 위한 기술을 구현하였다. 이를 위해 비지도학습 계열의 최신 딥러닝 알고리즘인 GAN의 응용알고리즘을 활용하였다.
본 논문에서는 자율운항선박의 예측 가능한 운항 경로 상에 잠재된 비상상황을 인식하기 위하여 운항 해역의 항적 정보를 활용한 방안과 이를 기반으로 충돌 위험과 같은 비상위험을 식별하는 프레임워크를 설계하였다. 설계한 프레임워크는 크게 항적 특성 분석 모듈, 항로예측 모듈, 위험 식별 모듈로 구성된다. 항적 특성 분석 모듈에서는 자율운항선박의 운항 해역에 관한 선박들의 항적 정보를 활용하기 위하여, 대상 VTS 관제 영역 내에서 취합된 누적 선박자동식별장치(AIS) 데이터를 이용하여 선박의 항적 특성을 분석하여 데이터베이스(DB)를 생성하였다. 그리고 운항 경로 예측 모듈에서는 누적된 항적 정보와 자율운항선박의 현재 운항 정보를 기반으로 특정 시간 동안의 운항 경로를 예측하기 위한 학습 네트워크 모델을 구성하였다. 마지막으로, 위험 식별 모듈에서는 예측한 운항 경로 상에 최근접점과 최근접점 거리 정보를 이용하여 충돌 위험 가능성이 있는 충돌위험영역을 식별하였다. 설계한 프레임워크는 자율운항선박의 육상 관제소에서 원격 제어를 통해 위험상황을 인지하고 회피할 수 있는 정보를 제공할 수 있음을 실제 항적 데이터를 활용하여 그 결과를 검증하였다.
최근 COVID-19 팬데믹으로 전 세계적으로 원격 근무로의 전환 속도가 가속화되면서 VPN 을 사용하는 기업이 증가하면서 VPN 을 통한 국내 개인정보 및 기술 유출이 빈번하게 일어나고 있다. 기존 전통적인 네트워크 프로토콜 분석 방법은 다양한 우회 방법과 패킷의 암호화로 인해서 VPN 프로토콜 탐지가 불가능하다. 하지만 AI 기반 모델을 사용하면 암호화된 패턴을 학습을 하여 분류가 가능하다. 따라서 본 논문에서는 오토인코더 기반 이미지 분류 기법으로 전통적인 방법으로 탐지하기 불가능하다고 생각했던 암호화된 VPN 패킷 중의 VPN 프로토콜을 직접 수집 및 탐지했고 성능이 0.99 가 나왔다.
개인화된 학습내용과 진도로 멀티미디어를 이용한 교재를 통해 학습 효과를 크게 제고할 수 있는 중등학교 멀티미디어 교실과 대학의 멀티미디어 센터를 위한 분산 스트림 서버 시스템을 구현하였다. 기존의 멀티미디어 정보 재생 시스템은 멀티미디어 교실에 적용하기에 적절하지 못한 제약점을 가지고 있다. 과다한 스트림당 비용이 요구되거나 그렇지 않으면 학습에 활용하기에는 저급한 재생 품질, 원활하지 못하는 시스템 및 서비스 확장성, 개별적 고유 클라이언트 환경에 의한 사용 이절감, 교사 조작 능력과 표현 의도가 전혀 고려되지 않은 일반적 저작 도구로 인한 교재 저작 어려움 그리고 구성 시스템간의 유기적 연동 부재로 인한 관리 어려움 등의 문제점을 극복한 시스댐을 구현하였다. 폐쇄되어 있는 교실에서뿐만 아니라 인터넷을 통한 광범 위한 원격 교육에 확장할 수 있도록 웹 기반 분산 시스댐으로 구성하였다. 전체 시스템의 구성 요소는 멀티미 디어 정보 저장 및 재생을 담당하는 스트림 서버 클라이언트 시스템, 분산되어 있는 서버의 통합 역할을 하는 서비스 게이트웨이, 그리고 클립 및 교재 저작을 위한 저작관리 시스템 등이다. 본 논문에서는 그 가운데 멀티미디어 정보를 저장, 전송하는스트립 서버의 설계 및 구현에 대해 설명한다. 윈도우NT서버에서 실행되는 한 대의 스트림 서버 시스템으로 한 학급의 클라이언트(50-60대)에서 MPEG~ 1 스트렴을 동시에 재생할 수 있는 성능을 아무런 시스템 변경 없이 응용 수준의 소프트웨어 엔진만으로 실현하였다. 그리고 타 구성 요소 시스템간의 유기적 연동을 통한 시스템의 확장성과 서비스의 유연성을 확보할 수 있었다.
건물 내부 공기 순환을 위한 공조 덕트는 장기간 사용 시 오염물질이 내부에 쌓여 인력 또는 로봇이 투입되어 청소가 주기적으로 수행된다. 청소는 작업시간과 인건비 문제를 해결하기 위해 최근 원격 조정으로 로봇을 작동시키는 방법이 사용되고 있다. 하지만 완전 자동화가 아니라 인력 의존적이며 청소 시간 단축에도 한계가 있다. 본 연구는 공조 덕트 청소 로봇 자율 주행을 위해 교차점 검출 알고리듬 개발에 대한 것이다. 자율 주행은 청소 로봇에 장착된 카메라 영상에서 교차점 검출 알고리듬을 통해 추출된 점과 중심점 사이의 거리 및 각도를 계산하여 로봇을 제어하도록 구성된다. 교차점 검출을 위한 데이터는 3D CAD 프로그램을 이용한 공조 덕트 내부 이미지를 Python을 이용해 교차점 좌표 및 두 경계선 각도를 추출하여 생성했다. 검출 알고리듬은 딥러닝 중 CNN 모델이 학습에 사용됐으며 학습 모델은 입력이미지에서 교차점 정보를 추출하며 학습 모델 정확도는 면적과 거리를 이용해 판단했다. 알고리듬 검증을 위해 청소 로봇을 제작했으며 로봇은 몸체, Raspberry Pi, 카메라 및 초음파 센서를 포함한 제어부, 모터와 바퀴를 포함한 구동부로 구성된다. 알고리듬을 탑재한 로봇 청소기 주행 영상을 통해 알고리듬을 검증했다. 향후 공조 덕트뿐만 아니라 에스컬레이터 등 다양한 환경에서 적용 가능할 것으로 기대된다.
본 연구의 목적은 사이버 대학 일반 교과목 토론식 수업의 온라인 토론과정에서 학습자들의 논제유형에 따른 참여적 차원과 상호작용 차원을 양적 질적으로 분석하고 그 효과성을 탐색하여 활성화 방안을 제안하는 데에 있다. 이를 위하여 온라인 토론방의 메시지 수와 양상을 양적으로 분석하였고 사후 설문을 추가로 진행하여 토론의 상호작용 요소들과 효과에 대한 인식을 살펴보았다. 제시된 두 논제유형은 의견제시형 논제와 목표 제시형 논제였다. 각 논제에의 참여적 차원을 살펴본 결과, 선행 연구와는 달리 의견제시형 논제 참여도가 높았다. 그 이유를 설문으로 탐색하였고 그 결과를 토대로 교수자가 온라인 토론의 논제를 제시할 때 참여자들의 성향을 참고하여야 함을 제안하였다. 또한 사후 설문을 통하여 상호작용에 대한 보다 심화된 결과들을 제시하였다. 설문에서 학습자들은 교수자의 강의와 강의자료 의존도가 매우 높은 것을 보여주었고 토론을 준비하면서 다양한 자료들과 상호작용하고 있음을 보여주었다. 이외에도 토론은 학습자들의 논증적 사고, 글쓰기, 해당 교과목 지식의 습득과 심화에도 도움을 주는 요소라는 인식을 나타냈다. 이를 바탕으로 본고는 교수자의 교육적 역할을 강조하고, 원격교육의 시대에 온라인 토론의 교육적 효과가 각 교과목마다 활성화되기를 제안하였다.
우리의 일상생활에 큰 변화를 가져온 코비드-19는 대학 교육에도 역시 큰 변화를 가져왔다. 전통적인 대면 수업방식에서 비대면 방식으로 변경되어 수업이 이루어지면서 교수자와 학생 모두 적응에 애를 먹는 모습을 보였고, 비대면 수업으로 인한 학력 격차의 발생 등의 문제 역시 제기되었다. 이에 본 연구는 코비드-19로 인한 대학의 비대면 수업에 대해 학생들이 어떠한 태도를 보이는지 알아보고자 하였다. 이에 본 연구는 Q 방법론을 적용하여 대학생들이 비대면 수업에 대해 가지고 있는 주관적 인식의 유형을 파악하고 이를 통해 향후 비대면 수업방식의 개발과 개선에 있어 참고할 점을 제안하고자 하였다. 30명의 P 표본과 34개의 Q 표본을 이용하여 분석한 결과 5개의 유형이 발견되었다. 첫째, 학습의 효율성 중시형, 둘째, 수업의 참여와 소통 중시형, 셋째, 비대면 수업의 적극적 수용과 활용형, 넷째, 원격 시스템과 장비 작동 오류로 인한 불만형, 다섯째, 상황에 따른 수동적 대응형이다. 본 연구의 결과를 바탕으로 살펴보았을 때 각 유형의 특성을 고려한 효과적인 비대면 수업을 위한 교육 방법의 개발이 필요할 것으로 보이며, 비대면 수업, 특히 녹화 강의가 갖는 학습의 효율성 측면에서의 장점은 분명한 것으로 보인다. 따라서 대면 수업이 대학에서 전면적으로 이루어지더라도 수업에서 동영상 녹화 강의를 보완적으로 제공하는 것이 학생들의 학습에 큰 도움이 될 것으로 여겨진다.
수소연료전지의 중요성은 계속 강조되며, 이 분야에서의 교육 및 훈련 수요가 증가하고 있다. 다양한 교육 환경 중에서 메타버스 교육은 특히 원격 학습에 대응하기 위해 글로벌 교육산업에서 새로운 변화의 시대를 열고 있다. 메타버스가 교육에 가져온 가장 중요한 변화는 단방향, 강사 중심 및 정적인 가르침 접근에서 다방향 및 동적인 접근으로의 전환이다. 메타버스는 수소 연료전지 엔지니어 교육에서도 효과적으로 활용될 것으로 예상되며, 교육과 훈련이 언제 어디서나 가능하게 함으로써 교육의 효과를 향상시킬 뿐만 아니라 엔지니어링 교육에 관련된 비용을 줄일 수 있을 것으로 기대된다. 본 연구에서는 이러한 아이디어에 영감을 받아 연료 전지 교육 플랫폼을 설계하고 있다. 메타버스를 활용하여 이론 학습 및 훈련을 결합한 플랫폼을 만들었다. 본 연구에서는 학습 참여자의 참여도를 높이기 위한 교육 훈련 콘텐츠 개발, 사용성 향상을 위한 사용자 인터페이스 구성, 가상 세계에서 물체와 상호 작용하는 환경 생성, 디지털 트윈 형태의 수렴 서비스 지원 등의 주요 요소를 개발했다.
녹피율은 행정구역면적 대비 녹지가 피복된 면적의 비율로, 실질적인 도시녹화 지표로 활용되고 있다. 현재 녹피율은 토지피복지도를 기반하여 산출되는데, 토지피복지도의 낮은 공간해상도와 일정하지 않은 제작시기는 정확한 녹피율 산출과 정밀한 녹피분석을 어렵게 한다. 따라서 본 연구는 새로운 녹피율 산출방안으로 항공영상과 심층학습을 활용한 방안을 제안한다. 항공영상은 높은 해상도와 비교적 일정한 주기로 정밀한 분석을 가능하게 하며 심층 학습은 항공영상 내 녹지를 자동으로 탐지할 수 있다. 지자체는 매년 다양한 목적을 위해 유인항공영상을 취득하여 이를 활용해 신속하게 녹피율을 산출한다. 하지만 미리 취득된 유인항공영상은 취득 시기와 해상도, 센서와 같은 세부사항을 선택할 수 없어 정밀한 분석이 어려울 수 있다. 이러한 한계점은 다양한 센서의 탑재가 가능하고 낮은 고도의 비행으로 인해 고해상도 영상을 취득할 수 있는 무인항공기를 활용하여 보완될 수 있다. 이에 두 가지 항공영상으로부터 녹피율을 산출하였고 그 결과, 모든 녹지 유형으로 부터 높은 정확도로 녹피율을 산출할 수 있었다. 하지만 유인항공영상으로부터 산출된 녹피율은 복잡한 환경에서 한계가 있었다. 이를 보완하고자 활용한 무인항공영상은 복잡한 환경에서도 높은 정확도의 녹피율을 산출할 수 있었고 추가밴드 영상을 통해 더 정밀한 녹지 영역 탐지가 가능했다. 추후 기존 유인항공영상에 새로 취득한 무인항공영상을 보완적으로 사용해 녹피율을 효과적으로 산출할 수 있을 것이라 기대된다.
대기 중의 이산화황(SO2)은 주로 인위적 배출원에 의해 발생하며 화학 반응을 통해 (초)미세먼지를 형성하여 직간접적으로 주변 환경 및 인체 건강에 해로운 영향을 주는 물질이다. 특히 지상에서의 농도는 인간 활동과 밀접한 관련이 있어 모니터링의 필요성이 매우 크다. 따라서, 본 연구에서는 TROPOMI SO2 연직 컬럼 농도 산출물 및 타 위성 산물과 모델 산출물 등을 융합 활용하여 기계학습 기법에 적용하여 SO2 지상 농도 추정모델을 개발하였다. 기계학습 기법으로는 널리 활용되고 있는 RF(Random Forest)에 잔차 보정 과정을 결합한 2-step 잔차 보정 RF를 적용하였다. 개발된 모델은 무작위, 공간 및 시간별 10-fold 교차 검증을 통하여 검증하였으며, 기울기(slope) 값이 1.14-1.25, 상관계수(R) 값이 0.55-0.65, rRMSE 값이 약 58-63% 정도로 나타났다. 이는 잔차 보정이 적용되지 않은 기존의 RF 대비 slope의 경우 약 10%, R과 rRMSE의 경우 약 3% 가량 향상된 결과를 보인다. 국가별로 나누어 분석하였을 때에는 샘플 수가 적고 SO2의 전반적인 농도가 낮은 일본 지역에서의 공간별 10-fold 교차검증 성능이 소폭 감소하는 것으로 나타났다. SO2 지상농도 분포를 계절별로 표출하였을 때, 일본의 경우 다른 지역 대비 연중 저농도가 관찰되며 높은 결측 값 비율로 인하여 관측소 농도 대비 2-step 잔차 보정 RF 모델에서 과대 모의하는 경향이 관찰되었다. 대표적 고농도 발생지인 중국의 YRD(Yangtze River Delta) 와 한국의 SMA(Seoul Metropolitan Area)의 계절적 분포 변화를 추가적으로 분석하였을 때, 연료 연소로 인한 겨울철 농도 증가 패턴이 나타났다. 이는 인위적 배출원의 영향을 크게 받는 SO2의 시공간적인 분포 특성을 잘 반영하고 있는 결과이다. 따라서, 본 연구를 통하여 제안한 모델은 장기적으로 SO2 지상 농도의 시공간적 분포를 파악하는 데에 활용될 수 있을 것으로 기대된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.