Loss Compression and Loss Correction Technique of 3D Point Cloud Data

3차원 데이터의 손실압축과 손실보정기법 연구

  • Published : 2021.05.03

Abstract

Due to the recent rapid change in the social environment due to Corona 19, the need for non-face-to-face/contact-based information exchange technology is rapidly emerging. Due to these changes, the development of an alternative system using a sense of immersion and a sense of presence is urgently required. In this study, in order to implement a video conferencing system, we implemented a technology for transmitting large-capacity 3D data in real time without delay. For this, the applied algorithm of GAN, the latest deep learning algorithm of the unsupervised learning series, was used.

최근 코로나19로 인한 사회 환경의 급변화로 인하여 비대면/비접촉 기반 정보 교환 기술의 필요성이 급속도로 대두되고 있다. 이러한 변화들로 인해 몰입감, 임장감을 이용한 대안시스템의 개발이 절실히 요구되고 있다. 본 연구에서는 화상회의 시스템을 구현하기 위해 대용량 3차원 데이터를 지연 없이 실시간으로 전송하기 위한 기술을 구현하였다. 이를 위해 비지도학습 계열의 최신 딥러닝 알고리즘인 GAN의 응용알고리즘을 활용하였다.

Keywords

Acknowledgement

이 논문은 한국연구재단(과학기술정보통신부)의 지원에 의함.(No. NRF- 2019R1G1A1087290)